Datasets:
File size: 12,125 Bytes
084bbff 4cc83f3 084bbff 4cc83f3 084bbff 4cc83f3 084bbff b4d218f 4cc83f3 084bbff a8fc91e 084bbff 929525b 2d50aea 084bbff 7fa6036 d7dc3f1 7fa6036 0306db9 2d50aea 0306db9 6eb8760 2d50aea 355021a 2d50aea bcaadc5 2d50aea bcaadc5 04f485b 2d50aea 37d2f30 a4af6bb 37d2f30 997e584 c469bcf 1e14408 c469bcf 1e14408 c469bcf 1e14408 c469bcf 51d3d0e c469bcf 2d50aea 7fa6036 9287c3e 91e981e 7bfe2c8 35272bb 7bfe2c8 35272bb 9848458 07c484f 43679fb d1179da 3c0c43f c30e7d4 07c484f d1179da c30e7d4 d1179da 8701dbc d1179da ef51d8e d1179da ef51d8e 3c0c43f d1179da b2a9cd4 b1cf86f b2a9cd4 d1179da b2a9cd4 c900dc1 d1179da c900dc1 2d50aea 3c0c43f 53e4392 9287c3e 53e4392 7bfe2c8 35272bb 7bfe2c8 07c484f 43679fb 53e4392 3c0c43f 53e4392 07c484f 53e4392 8701dbc 53e4392 ef51d8e 53e4392 ef51d8e 3c0c43f 53e4392 b2a9cd4 b1cf86f b2a9cd4 53e4392 b2a9cd4 53e4392 3fca1a8 d7dc3f1 4ff7fd1 d7dc3f1 2d50aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
---
dataset_info:
features:
- name: image
dtype: image
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int32
- name: meta_info
struct:
- name: title
dtype: string
- name: journal
dtype: string
- name: doi
dtype: string
- name: url
dtype: string
- name: question_type
dtype: string
splits:
- name: en
num_bytes: 546653187.125
num_examples: 1525
- name: zh
num_bytes: 546319847.125
num_examples: 1525
download_size: 218606009
dataset_size: 1092973034.25
configs:
- config_name: RxnBench-VQA
data_files:
- split: en
path: data/en-*
- split: zh
path: data/zh-*
license: cc-by-nc-sa-4.0
task_categories:
- visual-question-answering
language:
- en
- zh
tags:
- chemistry
---
# RxnBench: A Benchmark for Chemical Reaction Figure Understanding
## ๐ Benchmark Summary
RxnBench (SF-QA) is a visual question answering (VQA) benchmark comprising 1,525 multiple-choice questions (MCQs) at the PhD-level of organic chemistry reaction understanding.
The benchmark is built from 305 scientific figures drawn from high-impact OpenAssess journals.
For each figure, domain experts carefully designed five multiple-choice VQA questions targeting the interpretation of organic reaction diagrams.
These questions were further refined through multiple rounds of rigorous review and revision to ensure both clarity and scientific accuracy.
The questions cover a variety of types, including the description of chemical reaction images, extraction of reaction content, recognition of molecules or Markush structures, and determination of mechanisms.
This benchmark challenges visual-language models on their foundational knowledge of organic chemistry, multimodal contextual reasoning, and chemical reasoning skills.
The benchmark is released in both English and Chinese versions.
## ๐ Task Types
We categorize chemical reaction visual question answering tasks into six types:
- **Type 0 โ Fact Extraction**: Direct retrieval of textual or numerical information from reaction schemes.
- **Type 1 โ Reagent Roles and Functions Identification**: Identification of reagents and their functional roles, requiring chemical knowledge and reaction-type awareness.
- **Type 2 โ Reaction Mechanism and Process Understanding**: Interpretation of reaction progression, including intermediates, catalytic cycles, and mechanistic steps.
- **Type 3 โ Comparative Analysis and Reasoning**: Comparative evaluation, causal explanation, or outcome prediction under varying conditions.
- **Type 4 โ Multi-step Synthesis and Global Understanding**: Comprehension of multi-step pathways, step-to-step coherence, and overall synthetic design.
- **Type 5 โ Chemical Structure Recognition**: Extraction and reasoning-based parsing of chemical structures in SMILES or E-SMILES (as defined in the [MolParser](https://arxiv.org/abs/2411.11098) paper).

## ๐ฏ Benchmark Evaluation
This benchmark evaluates model performance on multiple-choice question answering (MCQ) tasks.
We provide two versions of the prompt template, depending on the language setting.
**English Prompt**
```
Question: {question}
Choices:
A. {choice_A}
B. {choice_B}
C. {choice_C}
D. {choice_D}
Based on the image and the question, choose the most appropriate answer.
**Only output a single letter (A, B, C, or D)**. Do NOT output any other text or explanation.
```
**Chinese Prompt**
```
้ฎ้ข: {question}
้้กน:
A. {choice_A}
B. {choice_B}
C. {choice_C}
D. {choice_D}
่ฏทๆ นๆฎๅพๅๅ้ฎ้ข๏ผไปไปฅไธๅไธช้้กนไธญ้ๆฉๆๅ้็็ญๆกใ
ๅช่พๅบๅไธชๅญๆฏ (A, B, C ๆ D)๏ผไธ่ฆ่พๅบ้้กนๅ
ๅฎน๏ผไนไธ่ฆ่พๅบไปปไฝ่งฃ้ใ
```
**Evaluation Protocol**
If the modelโs output is not one of A, B, C, or D, we use GPT-4o to map the output to AโD based on the option content.
The final evaluation reports the absolute accuracy of the benchmark in both English and Chinese versions.
Code Example: https://github.com/uni-parser/RxnBench
## ๐ Benchmark Leaderboard
We evaluated several of the latest popular MLLMs, including both closed-source and open-source models.
| Moldel | Think | Weight | API-Version | RxnBench-En | RxnBench-Zh | Mean Score |
| ---- |:----:|:----:|:----:|:----:|:----:|:----:|
| Gemini-3-Flash-preview | โ | Proprietary | 20251217 | **0.9593** | **0.9652** | **0.9623** |
| Seed1.8-Think | โ | Proprietary | 20251218 | 0.9325 | 0.9403 | 0.9364 |
| Gemini-3-Pro-preview | โ | Proprietary | 20251119 | 0.9318 | 0.9403 | 0.9361 |
| GPT-5(high) | โ | Proprietary | 20250807 | 0.9279 | 0.9246 | 0.9263 |
| Gemini-2.5-Pro | โ | Proprietary | 20250617 | 0.9095 | 0.9423 | 0.9259 |
| GPT-5.1(high) | โ | Proprietary | 20251113 | 0.9213 | 0.9220 | 0.9216 |
| GPT-5(medium) | โ | Proprietary | 20250807 | 0.9207 | 0.9226 | 0.9216 |
| Qwen3-VL-235BA22B-Think | โ | Open | - | 0.9220 | 0.9134 | 0.9177 |
| Qwen3-VL-32B-Think | โ | Open | - | 0.9128 | 0.9161 | 0.9144 |
| GPT-5.1(medium) | โ | Proprietary | 20251113 | 0.9108 | 0.9141 | 0.9125 |
| GPT-5-mini | โ | Proprietary | 20250807 | 0.9108 | 0.9128 | 0.9118 |
| Seed1.5-VL-Think | โ | Proprietary | 20250428 | 0.9056 | 0.9161 | 0.9109 |
| GPT o3 | โ | Proprietary | 20250416 | 0.9056 | 0.9115 | 0.9086 |
| GPT o4 mini | โ | Proprietary | 20250416 | 0.9062 | 0.9075 | 0.9069 |
| InternVL3.5-241B-A28B | โ | Open | - | 0.9003 | 0.9062 | 0.9033 |
| Intern-S1 | โ | Open | - | 0.8938 | 0.8944 | 0.8941 |
| Qwen3-VL-30BA3B-Think | โ | Open | - | 0.8689 | 0.8590 | 0.8689 |
| Qwen3-VL-Plus | ร | Proprietary | 20250923 | 0.8551 | 0.8656 | 0.8604 |
| Qwen3-VL-8B-Think | โ | Open | - | 0.8636 | 0.8564 | 0.8600 |
| Seed1.5-VL | ร | Proprietary | 20250328 | 0.8518 | 0.8669 | 0.8594 |
| Qwen3-VL-235BA22B-Instruct | ร | Open | - | 0.8492 | 0.8675 | 0.8584 |
| InternVL3-78b | ร | Open | - | 0.8531 | 0.8308 | 0.8420 |
| Qwen3-VL-4B-Think | โ | Open | - | 0.8577 | 0.8256 | 0.8416 |
| Intern-S1-mini | โ | Open | - | 0.8521 | 0.8282 | 0.8402 |
| GLM-4.1V-9B-Thinking | โ | Open | - | 0.8392 | 0.8341 | 0.8367 |
| Qwen3-VL-32B-Instruct | ร | Open | - | 0.8315 | 0.8407 | 0.8361 |
| Qwen2.5-VL-72B | ร | Open | - | 0.8341 | 0.8308 | 0.8325 |
| Qwen2.5-VL-Max | ร | Proprietary | 20250813 | 0.8192 | 0.8262 | 0.8227 |
| GPT-5-nano | โ | Proprietary | 20250807 | 0.7980 | 0.7941 | 0.7961 |
| Qwen2.5-VL-32B | ร | Open | - | 0.7980 | 0.7908 | 0.7944 |
| Gemini-2.5-Flash | โ | Proprietary | 20250617 | 0.6925 | 0.8557 | 0.7741 |
| Qwen3-VL-8B-Instruct | ร | Open | - | 0.7548 | 0.7495 | 0.7521 |
| Qwen3-VL-30BA3B-Instruct | ร | Open | - | 0.7456 | 0.7436 | 0.7456 |
| GPT-4o | ร | Proprietary | 20240806 | 0.7462 | 0.7436 | 0.7449 |
| Qwen2.5-VL-7B | ร | Open | - | 0.7082 | 0.7233 | 0.7158 |
| Qwen3-VL-4B-Instruct | ร | Open | - | 0.7023 | 0.7023 | 0.7023 |
| Qwen3-VL-2B-Think | โ | Open | - | 0.6780 | 0.6708 | 0.6744 |
| Qwen2.5-VL-3B | ร | Open | - | 0.6748 | 0.6643 | 0.6696 |
| GPT-4o mini | ร | Proprietary | 20240718 | 0.6636 | 0.6066 | 0.6351 |
| Qwen3-VL-2B-Instruct | ร | Open | - | 0.5711 | 0.5928 | 0.5820 |
| *Choice longest answer* | - | - | - | 0.4262 | 0.4525 | 0.4394 |
| Deepseek-VL2 | ร | Open | - | 0.4426 | 0.4216 | 0.4321 |
| *Random* | - | - | - | 0.2500 | 0.2500 | 0.2500 |
We also conducted separate evaluations for different task types (in RxnBench-en).
| Moldel | Think | Weight | API-Version | Type0 | Type1 | Type2 | Type3 | Type4 | Type5 |
| ---- |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
| Gemini-3-Flash-preview | โ | Proprietary | 20251217 | 0.9613 | **0.9643** | **0.9764** | **0.9630** | 0.9492 | **0.9030** |
| Seed1.8-Think | โ | Proprietary | 20251218 | 0.9331 | 0.9484 | 0.9527 | 0.9444 | 0.9492 | 0.8284 |
| Gemini-3-Pro-preview | โ | Proprietary | 20251119 | **0.9648** | 0.9246 | 0.9527 | 0.9398 | 0.9322 | 0.7463 |
| GPT-5(high) | โ | Proprietary | 20250807 | 0.9313 | 0.9444 | 0.9527 | 0.9167 | **0.9661** | 0.8358 |
| Gemini-2.5-Pro | โ | Proprietary | 20250617 | 0.9331 | 0.9246 | 0.9459 | 0.9491 | 0.9322 | 0.6343 |
| GPT-5.1(high) | โ | Proprietary | 20251113 | 0.9243 | 0.9524 | 0.9426 | 0.9167 | 0.9661 | 0.7910 |
| GPT-5(medium) | โ | Proprietary | 20250807 | 0.9349 | 0.9325 | 0.9493 | 0.9167 | 0.9492 | 0.7761 |
| Qwen3-VL-235BA22B-Think | โ | Open | - | 0.9190 | 0.9405 | 0.9459 | 0.9213 | 0.9322 | 0.8433 |
| Qwen3-VL-32B-Think | โ | Open | - | 0.9296 | 0.9405 | 0.9426 | 0.9259 | 0.9153 | 0.7015 |
| GPT-5.1(medium) | โ | Proprietary | 20251113 | 0.9243 | 0.9365 | 0.9426 | 0.9167 | 0.9492 | 0.7090 |
| GPT-5-mini | โ | Proprietary | 20250807 | 0.9225 | 0.9325 | 0.9257 | 0.9259 | 0.9831 | 0.7388 |
| Seed1.5-VL-Think | โ | Proprietary | 20250428 | 0.8996 | 0.9365 | 0.9358 | 0.9074 | 0.9153 | 0.8060 |
| GPT o3 | โ | Proprietary | 20250416 | 0.9313 | 0.9325 | 0.9223 | 0.8981 | 0.9492 | 0.7090 |
| GPT o4 mini | โ | Proprietary | 20250416 | 0.6391 | 0.7302 | 0.7500 | 0.6667 | 0.6271 | 0.4627 |
| InternVL3.5-241B-A28B | โ | Open | - | 0.8944 | 0.9127 | 0.9291 | 0.9167 | 0.9153 | 0.8134 |
| Intern-S1 | โ | Open | - | 0.9014 | 0.9127 | 0.9223 | 0.9028 | 0.8814 | 0.7463 |
| Qwen3-VL-30BA3B-Think | โ | Open | - | 0.8732 | 0.8810 | 0.9054 | 0.8843 | 0.9322 | 0.6940 |
| Qwen3-VL-Plus | ร | Proprietary | 20250923 | 0.8275 | 0.8968 | 0.8986 | 0.8565 | 0.9153 | 0.7687 |
| Qwen3-VL-8B-Think | โ | Open | - | 0.8768 | 0.8730 | 0.8885 | 0.9028 | 0.8983 | 0.6567 |
| Seed1.5-VL | ร | Proprietary | 20250328 | 0.9327 | 0.9127 | 0.9122 | 0.8472 | 0.8305 | 0.7015 |
| Qwen3-VL-235BA22B-Instruct | ร | Open | - | 0.8204 | 0.8929 | 0.8986 | 0.8426 | 0.8814 | 0.7761 |
| InternVL3-78b | ร | Open | - | 0.8556 | 0.8730 | 0.8885 | 0.8981 | 0.9153 | 0.6194 |
| Qwen3-VL-4B-Think | โ | Open | - | 0.8838 | 0.8770 | 0.8615 | 0.9074 | 0.8983 | 0.6045 |
| Intern-S1-mini | โ | Open | - | 0.8239 | 0.8690 | 0.8547 | 0.8611 | 0.8475 | 0.6791 |
| GLM-4.1V-9B-Thinking | โ | Open | - | 0.8433 | 0.8690 | 0.8649 | 0.8657 | 0.8814 | 0.6493 |
| Qwen3-VL-32B-Instruct | ร | Open | - | 0.8169 | 0.8571 | 0.8885 | 0.8519 | 0.8305 | 0.6866 |
| Qwen2.5-VL-72B | ร | Open | - | 0.8063 | 0.8063 | 0.8770 | 0.9088 | 0.8102 | 0.9322 | 0.7090 |
| Qwen2.5-VL-Max | ร | Proprietary | 20250813 | 0.7958 | 0.8571 | 0.8885 | 0.8194 | 0.8983 | 0.6642 |
| GPT-5-nano | โ | Proprietary | 20250807 | 0.8063 | 0.8452 | 0.8311 | 0.8241 | 0.7797 | 0.5672 |
| Qwen2.5-VL-32B | ร | Open | - | 0.7729 | 0.8413 | 0.8750 | 0.8009 | 0.8305 | 0.6418 |
| Gemini-2.5-Flash | โ | Proprietary | 20250617 | 0.7799 | 0.6111 | 0.6757 | 0.6620 | 0.7627 | 0.5373 |
| Qwen3-VL-8B-Instruct | ร | Open | - | 0.7113 | 0.8175 | 0.8446 | 0.8241 | 0.7627 | 0.5075 |
| Qwen3-VL-30BA3B-Instruct | ร | Open | - | 0.7042 | 0.7937 | 0.8311 | 0.7824 | 0.7119 | 0.5970 |
| GPT-4o | ร | Proprietary | 20240806 | 0.7359 | 0.8175 | 0.7973 | 0.7500 | 0.7627 | 0.5224 |
| Qwen2.5-VL-7B | ร | Open | - | 0.6678 | 0.7659 | 0.8041 | 0.7130 | 0.6441 | 0.5373 |
| Qwen3-VL-4B-Instruct | ร | Open | - | 0.6708 | 0.7302 | 0.7804 | 0.7222 | 0.6610 | 0.5970 |
| Qwen3-VL-2B-Think | โ | Open | - | 0.7342 | 0.6706 | 0.7128 | 0.7083 | 0.6102 | 0.3657 |
| Qwen2.5-VL-3B | ร | Open | - | 0.6426 | 0.7381 | 0.7635 | 0.6898 | 0.6610 | 0.4776 |
| GPT-4o mini | ร | Proprietary | 20240718 | 0.6391 | 0.7302 | 0.7500 | 0.6667 | 0.6271 | 0.4627 |
| Qwen3-VL-2B-Instruct | ร | Open | - | 0.5405 | 0.6190 | 0.6318 | 0.6250 | 0.6102 | 0.3731 |
| Deepseek-VL2 | ร | Open | - | 0.4120 | 0.5040 | 0.4899 | 0.4907 | 0.3729 | 0.3060 |
## ๐ RxnBench-Doc
A single reaction image often lacks the information needed for full interpretation, requiring contextual text from the literature. Therefore, we also provide a benchmark for chemical reaction literature understanding.
https://huggingface.co/datasets/UniParser/RxnBench-Doc
## ๐ Citation
our paper coming soon ... |