Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -31,3 +31,118 @@ configs:
|
|
| 31 |
- split: test
|
| 32 |
path: data/test-*
|
| 33 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
- split: test
|
| 32 |
path: data/test-*
|
| 33 |
---
|
| 34 |
+
|
| 35 |
+
# VideoEval-Pro
|
| 36 |
+
|
| 37 |
+
VideoEval-Pro is a robust and realistic long video understanding benchmark containing open-ended, short-answer QA problems. The dataset is constructed by reformatting questions from four existing long video understanding MCQ benchmarks: Video-MME, MLVU, LVBench, and LongVideoBench into free-form questions.
|
| 38 |
+
|
| 39 |
+
The evaluation code and scripts are available at: [TIGER-AI-Lab/VideoEval-Pro](https://github.com/TIGER-AI-Lab/VideoEval-Pro)
|
| 40 |
+
|
| 41 |
+
## Task Types
|
| 42 |
+
VideoEval-Pro contains various types of video understanding tasks. The distribution of task types is shown below:
|
| 43 |
+
|
| 44 |
+

|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
## Dataset Structure
|
| 48 |
+
Each example in the dataset contains:
|
| 49 |
+
- `video`: Name (path) of the video file
|
| 50 |
+
- `question`: The question about the video content
|
| 51 |
+
- `options`: Original options from the source benchmark
|
| 52 |
+
- `answer`: The correct MCQ answer
|
| 53 |
+
- `answer_text`: The correct free-form answer
|
| 54 |
+
- `meta`: Additional metadata from the source benchmark
|
| 55 |
+
- `source`: Source benchmark
|
| 56 |
+
- `qa_subtype`: Question task subtype
|
| 57 |
+
- `qa_type`: Question task type
|
| 58 |
+
|
| 59 |
+
## Evaluation Steps
|
| 60 |
+
|
| 61 |
+
1. **Download and Prepare Videos**
|
| 62 |
+
```bash
|
| 63 |
+
# Navigate to videos directory
|
| 64 |
+
cd videos
|
| 65 |
+
|
| 66 |
+
# Merge all split tar.gz files into a single archive
|
| 67 |
+
cat videos_part_*.tar.gz > videos_merged.tar.gz
|
| 68 |
+
|
| 69 |
+
# Extract the merged archive
|
| 70 |
+
tar -xzf videos_merged.tar.gz
|
| 71 |
+
|
| 72 |
+
# [Optional] Clean up the split files and merged archive
|
| 73 |
+
rm videos_part_*.tar.gz videos_merged.tar.gz
|
| 74 |
+
|
| 75 |
+
# After extraction, you will get a directory containing all videos
|
| 76 |
+
# The path to this directory will be used as --video_root in evaluation
|
| 77 |
+
# For example: 'VideoEval-Pro/videos'
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
2. **[Optional] Pre-extract Frames**
|
| 81 |
+
To improve efficiency, you can pre-extract frames from videos. The extracted frames should be organized as follows:
|
| 82 |
+
```
|
| 83 |
+
frames_root/
|
| 84 |
+
βββ video_name_1/ # Directory name is thevideo name
|
| 85 |
+
β βββ 000001.jpg # Frame images
|
| 86 |
+
β βββ 000002.jpg
|
| 87 |
+
β βββ ...
|
| 88 |
+
βββ video_name_2/
|
| 89 |
+
β βββ 000001.jpg
|
| 90 |
+
β βββ 000002.jpg
|
| 91 |
+
β βββ ...
|
| 92 |
+
βββ ...
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
After frame extraction, the path to the frames will be used as `--frames_root`. Set `--using_frames True` when running the evaluation script.
|
| 96 |
+
|
| 97 |
+
3. **Setup Evaluation Environment**
|
| 98 |
+
```bash
|
| 99 |
+
# Clone the repository from the GitHub repository
|
| 100 |
+
git clone https://github.com/TIGER-AI-Lab/VideoEval-Pro
|
| 101 |
+
cd VideoEval-Pro
|
| 102 |
+
|
| 103 |
+
# Create conda environment from requirements.txt (there are different requirements files for different models)
|
| 104 |
+
conda create -n videoevalpro --file requirements.txt
|
| 105 |
+
conda activate videoevalpro
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
4. **Run Evaluation**
|
| 109 |
+
```bash
|
| 110 |
+
cd VideoEval-Pro
|
| 111 |
+
|
| 112 |
+
# Set PYTHONPATH
|
| 113 |
+
export PYTHONPATH=.
|
| 114 |
+
|
| 115 |
+
# Run evaluation script with the following parameters:
|
| 116 |
+
# --video_root: Path to video files folder
|
| 117 |
+
# --frames_root: Path to video frames folder [For using_frames]
|
| 118 |
+
# --output_path: Path to save output results
|
| 119 |
+
# --using_frames: Whether to use pre-extracted frames
|
| 120 |
+
# --model_path: Path to model
|
| 121 |
+
# --device: Device to run inference on
|
| 122 |
+
# --num_frames: Number of frames to sample from video
|
| 123 |
+
# --max_retries: Maximum number of retries for failed inference
|
| 124 |
+
# --num_threads: Number of threads for parallel processing
|
| 125 |
+
|
| 126 |
+
python tools/*_chat.py \
|
| 127 |
+
--video_root <path_to_videos> \
|
| 128 |
+
--frames_root <path_to_frames> \
|
| 129 |
+
--output_path <path_to_save_results> \
|
| 130 |
+
--using_frames <True/False> \
|
| 131 |
+
--model_path <model_name_or_path> \
|
| 132 |
+
--device <device> \
|
| 133 |
+
--num_frames <number_of_frames> \
|
| 134 |
+
--max_retries <max_retries> \
|
| 135 |
+
--num_threads <num_threads>
|
| 136 |
+
|
| 137 |
+
E.g.:
|
| 138 |
+
python tools/qwen_chat.py \
|
| 139 |
+
--video_root ./videos \
|
| 140 |
+
--frames_root ./frames \
|
| 141 |
+
--output_path ./results/qwen_results.jsonl \
|
| 142 |
+
--using_frames False \
|
| 143 |
+
--model_path Qwen/Qwen2-VL-7B-Instruct \
|
| 144 |
+
--device cuda \
|
| 145 |
+
--num_frames 32 \
|
| 146 |
+
--max_retries 10 \
|
| 147 |
+
--num_threads 1
|
| 148 |
+
```
|