File size: 12,366 Bytes
0662e7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Neural net models for tabular datasets."""
from typing import Union, List
import numpy as np
import tensorflow as tf
TfInput = Union[np.ndarray, tf.Tensor]
def exu(x, weight, bias):
"""ExU hidden unit modification."""
return tf.exp(weight) * (x - bias)
# Activation Functions
def relu(x, weight, bias):
"""ReLU activation."""
return tf.nn.relu(weight * (x - bias))
def relu_n(x, n = 1):
"""ReLU activation clipped at n."""
return tf.clip_by_value(x, 0, n)
class ActivationLayer(tf.keras.layers.Layer):
"""Custom activation Layer to support ExU hidden units."""
def __init__(self,
num_units,
name = None,
activation = 'exu',
trainable = True):
"""Initializes ActivationLayer hyperparameters.
Args:
num_units: Number of hidden units in the layer.
name: The name of the layer.
activation: Activation to use. The default value of `None` corresponds to
using the ReLU-1 activation with ExU units while `relu` would use
standard hidden units with ReLU activation.
trainable: Whether the layer parameters are trainable or not.
"""
super(ActivationLayer, self).__init__(trainable=trainable, name=name)
self.num_units = num_units
self._trainable = trainable
if activation == 'relu':
self._activation = relu
self._beta_initializer = 'glorot_uniform'
elif activation == 'exu':
self._activation = lambda x, weight, bias: relu_n(exu(x, weight, bias))
self._beta_initializer = tf.initializers.truncated_normal(
mean=4.0, stddev=0.5)
else:
raise ValueError('{} is not a valid activation'.format(activation))
def build(self, input_shape):
"""Builds the layer weight and bias parameters."""
self._beta = self.add_weight(
name='beta',
shape=[input_shape[-1], self.num_units],
initializer=self._beta_initializer,
trainable=self._trainable)
self._c = self.add_weight(
name='c',
shape=[1, self.num_units],
initializer=tf.initializers.truncated_normal(stddev=0.5),
trainable=self._trainable)
super(ActivationLayer, self).build(input_shape)
@tf.function
def call(self, x):
"""Computes the output activations."""
center = tf.tile(self._c, [tf.shape(x)[0], 1])
out = self._activation(x, self._beta, center)
return out
class FeatureNN(tf.keras.layers.Layer):
"""Neural Network model for each individual feature.
Attributes:
hidden_layers: A list containing hidden layers. The first layer is an
`ActivationLayer` containing `num_units` neurons with specified
`activation`. If `shallow` is False, then it additionally contains 2
tf.keras.layers.Dense ReLU layers with 64, 32 hidden units respectively.
linear: Fully connected layer.
"""
def __init__(self,
num_units,
dropout = 0.5,
trainable = True,
shallow = True,
feature_num = 0,
name_scope = 'model',
activation = 'exu'):
"""Initializes FeatureNN hyperparameters.
Args:
num_units: Number of hidden units in first hidden layer.
dropout: Coefficient for dropout regularization.
trainable: Whether the FeatureNN parameters are trainable or not.
shallow: If True, then a shallow network with a single hidden layer is
created, otherwise, a network with 3 hidden layers is created.
feature_num: Feature Index used for naming the hidden layers.
name_scope: TF name scope str for the model.
activation: Activation and type of hidden unit(ExUs/Standard) used in the
first hidden layer.
"""
super(FeatureNN, self).__init__()
self._num_units = num_units
self._dropout = dropout
self._trainable = trainable
self._tf_name_scope = name_scope
self._feature_num = feature_num
self._shallow = shallow
self._activation = activation
def build(self, input_shape):
"""Builds the feature net layers."""
self.hidden_layers = [
]
if not self._shallow:
self._h1 = tf.keras.layers.Dense(
8,
activation='sigmoid',
use_bias=True,
trainable=self._trainable,
name='h1_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
self._h2 = tf.keras.layers.Dense(
8,
activation='relu',
use_bias=True,
trainable=self._trainable,
name='h2_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
self._h3 = tf.keras.layers.Dense(
8,
activation='sigmoid',
use_bias=True,
trainable=self._trainable,
name='h3_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
self.hidden_layers += [self._h1,self._h2,self._h3]
self.linear = tf.keras.layers.Dense(
1,
use_bias=True,
trainable=self._trainable,
name='dense_{}'.format(self._feature_num),
kernel_initializer='glorot_uniform')
super(FeatureNN, self).build(input_shape)
@tf.function
def call(self, x, training):
"""Computes FeatureNN output with either evaluation or training mode."""
with tf.name_scope(self._tf_name_scope):
for l in self.hidden_layers:
x = tf.nn.dropout(
l(x), rate=tf.cond(training, lambda: self._dropout, lambda: 0.0))
x = tf.squeeze(self.linear(x), axis=1)
return x
class NAM(tf.keras.Model):
"""Neural additive model.
Attributes:
feature_nns: List of FeatureNN, one per input feature.
"""
def __init__(self,
num_inputs,
num_units,
trainable = True,
shallow = True,
feature_dropout = 0.0,
dropout = 0.0,
**kwargs):
"""Initializes NAM hyperparameters.
Args:
num_inputs: Number of feature inputs in input data.
num_units: Number of hidden units in first layer of each feature net.
trainable: Whether the NAM parameters are trainable or not.
shallow: If True, then shallow feature nets with a single hidden layer are
created, otherwise, feature nets with 3 hidden layers are created.
feature_dropout: Coefficient for dropping out entire Feature NNs.
dropout: Coefficient for dropout within each Feature NNs.
**kwargs: Arbitrary keyword arguments. Used for passing the `activation`
function as well as the `name_scope`.
"""
super(NAM, self).__init__()
self._num_inputs = num_inputs
if isinstance(num_units, list):
self._num_units = num_units
elif isinstance(num_units, int):
self._num_units = [num_units for _ in range(self._num_inputs)]
self._trainable = trainable
self._shallow = shallow
self._feature_dropout = feature_dropout
self._dropout = dropout
self._kwargs = kwargs
def build(self, input_shape):
"""Builds the FeatureNNs on the first call."""
self.feature_nns = [None] * self._num_inputs
for i in range(self._num_inputs):
self.feature_nns[i] = FeatureNN(
num_units=self._num_units[i],
dropout=self._dropout,
trainable=self._trainable,
shallow=self._shallow,
feature_num=i)
self._bias = self.add_weight(
name='bias',
initializer=tf.keras.initializers.Zeros(),
shape=(1,),
trainable=self._trainable)
self._true = tf.constant(True, dtype=tf.bool)
self._false = tf.constant(False, dtype=tf.bool)
def call(self, x, training = True):
"""Computes NAM output by adding the outputs of individual feature nets."""
individual_outputs = self.calc_outputs(x, training=training)
stacked_out = tf.stack(individual_outputs, axis=-1)
training = self._true if training else self._false
dropout_out = tf.nn.dropout(
stacked_out,
rate=tf.cond(training, lambda: self._feature_dropout, lambda: 0.0))
out = tf.reduce_sum(dropout_out, axis=-1)
return out + self._bias
def get_loss(self, x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s, pair_s1,alpha_3,num_fea):
output=self.call(x,training=True)
output=tf.reshape(output, len(x))
true_value=tf.cast(true_value,tf.float32)
#Binary cross entropy
BCE=-tf.reduce_sum(tf.multiply(tf.math.log(output+0.00001),true_value)+tf.multiply((1-true_value),tf.math.log(1-output+0.00001)))/len(x)
MSE= tf.reduce_mean(tf.square(output - true_value))
print(MSE)
#Punishment
puni_2=0
for i in range(len(pair)):
temp=np.zeros(len(x[0]))
temp1=np.zeros(len(x[0]))
temp[0:num_fea]=pair[i]
temp1[0:num_fea]=pair1[i]
out=self.calc_outputs([temp], training=True)
out1=self.calc_outputs([temp1], training=True)
puni_2+=max(out1[0]-out[0],0)
punish_2=alpha_2*puni_2
print("loss of strong pairwise monotonicity",punish_2)
ans = tf.constant(MSE+punish_2)
print("overall loss",ans)
return ans
def get_grad(self, x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s,pair_s1,alpha_3,num_fea):
with tf.GradientTape() as tape:
tape.watch(self.variables)
L = self.get_loss(x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s,pair_s1,alpha_3,num_fea)
g = tape.gradient(L, self.variables)
return g
def network_learn(self, x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s, pair_s1,alpha_3,learning_r,num_fea):
g = self.get_grad(x,true_value,monotonic_feature,individual_output,alpha_1,pair,pair1,pair2,pair3,alpha_2,pair_s, pair_s1,alpha_3,num_fea)
tf.keras.optimizers.Adam(learning_rate=learning_r).apply_gradients(zip(g, self.variables))
def calc_outputs(self, x, training = True):
"""Returns the output computed by each feature net."""
training = self._true if training else self._false
list_x = tf.split(x, list(self._kwargs['kwargs']), axis=-1)
return [
self.feature_nns[i](x_i, training=training)
for i, x_i in enumerate(list_x)
]
class DNN(tf.keras.Model):
"""Deep Neural Network with 10 hidden layers.
Attributes:
hidden_layers: A list of 10 tf.keras.layers.Dense layers with ReLU.
linear: Fully-connected layer.
"""
def __init__(self, trainable = True, dropout = 0.15):
"""Creates the DNN layers.
Args:
trainable: Whether the DNN parameters are trainable or not.
dropout: Coefficient for dropout regularization.
"""
super(DNN, self).__init__()
self._dropout = dropout
self.hidden_layers = [None for _ in range(10)]
for i in range(10):
self.hidden_layers[i] = tf.keras.layers.Dense(
100,
activation='relu',
use_bias=True,
trainable=trainable,
name='dense_{}'.format(i),
kernel_initializer='he_normal')
self.linear = tf.keras.layers.Dense(
1,
use_bias=True,
trainable=trainable,
name='linear',
kernel_initializer='he_normal')
self._true = tf.constant(True, dtype=tf.bool)
self._false = tf.constant(False, dtype=tf.bool)
def call(self, x, training = True):
"""Creates the output tensor given an input."""
training = self._true if training else self._false
for l in self.hidden_layers:
x = tf.nn.dropout(
l(x), rate=tf.cond(training, lambda: self._dropout, lambda: 0.0))
x = tf.squeeze(self.linear(x), axis=-1)
return x
|