Upload dataset.py with huggingface_hub
Browse files- dataset.py +336 -0
dataset.py
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.utils.data import Dataset
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
import copy
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pdb
|
| 7 |
+
import os
|
| 8 |
+
import io
|
| 9 |
+
import json
|
| 10 |
+
import gzip
|
| 11 |
+
import zstandard as zstd
|
| 12 |
+
import numpy as np
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
import pandas as pd
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class SemiNATForSingleRoundMaskInput(Dataset):
|
| 18 |
+
'''
|
| 19 |
+
Mask掉了所有的输入,只有输出的loss
|
| 20 |
+
'''
|
| 21 |
+
|
| 22 |
+
def __init__(self, tokenizer, datas, max_length, proc):
|
| 23 |
+
self.tokenizer = tokenizer
|
| 24 |
+
self.max_length = max_length
|
| 25 |
+
self.proc = proc
|
| 26 |
+
# 用 apply + 并行加速预处理
|
| 27 |
+
processed = self._vectorized_preprocess(datas)
|
| 28 |
+
self.input_ids = processed["input_ids"]
|
| 29 |
+
self.labels = processed["labels"]
|
| 30 |
+
self.attention_mask = processed["attention_mask"]
|
| 31 |
+
self.slice_indices = processed["slice_indices"]
|
| 32 |
+
|
| 33 |
+
def _vectorized_preprocess(self, datas):
|
| 34 |
+
# 批量预分配内存
|
| 35 |
+
input_ids = np.zeros((len(datas), self.max_length), dtype=np.int64)
|
| 36 |
+
attention_mask = np.zeros((len(datas), self.max_length),
|
| 37 |
+
dtype=np.int64)
|
| 38 |
+
labels = np.full((len(datas), self.max_length), -100, dtype=np.int64)
|
| 39 |
+
slice_indices = np.full((len(datas), self.max_length),
|
| 40 |
+
-1,
|
| 41 |
+
dtype=np.int64)
|
| 42 |
+
|
| 43 |
+
# 批量处理所有行的 messages
|
| 44 |
+
def process_row(row):
|
| 45 |
+
total_inputs = []
|
| 46 |
+
total_labels = []
|
| 47 |
+
sample_slice = []
|
| 48 |
+
|
| 49 |
+
# pdb.set_trace()
|
| 50 |
+
for msg in row['messages']:
|
| 51 |
+
# 批量分词(假设 msg['content'] 是文本列表)
|
| 52 |
+
inputs = self.tokenizer(msg['content'],
|
| 53 |
+
padding=False,
|
| 54 |
+
truncation=False,
|
| 55 |
+
add_special_tokens=False).input_ids
|
| 56 |
+
total_inputs.extend(inputs)
|
| 57 |
+
|
| 58 |
+
if msg['role'] == 'user':
|
| 59 |
+
total_labels.extend(len(inputs) * [-100])
|
| 60 |
+
elif msg['role'] == 'assistant':
|
| 61 |
+
total_labels.extend(inputs)
|
| 62 |
+
sample_slice.extend(msg['split_pos'])
|
| 63 |
+
|
| 64 |
+
# 截断或填充逻辑
|
| 65 |
+
seq_len = min(len(total_inputs), self.max_length)
|
| 66 |
+
# 输入和标签
|
| 67 |
+
input_ids = total_inputs[:self.max_length] + [
|
| 68 |
+
self.tokenizer.pad_token_id
|
| 69 |
+
] * (self.max_length - seq_len)
|
| 70 |
+
labels = total_labels[:self.max_length] + [-100] * (
|
| 71 |
+
self.max_length - seq_len)
|
| 72 |
+
|
| 73 |
+
if all(l == -100 for l in labels):
|
| 74 |
+
return None # 这一条数据无有效标签,丢弃
|
| 75 |
+
|
| 76 |
+
# attention_mask
|
| 77 |
+
attention_mask = [1] * seq_len + [0] * (self.max_length - seq_len)
|
| 78 |
+
# slice_indices
|
| 79 |
+
slice_arr = np.array(sample_slice[:self.max_length] + [-1] *
|
| 80 |
+
(self.max_length - len(sample_slice)))
|
| 81 |
+
slice_arr[slice_arr >= self.max_length -
|
| 82 |
+
1] = -1 # 过滤超长位置,这里-1是因为max length是1024,最大index是1023
|
| 83 |
+
|
| 84 |
+
return input_ids, labels, attention_mask, slice_arr
|
| 85 |
+
|
| 86 |
+
# 并行处理所有行(需安装 pandarallel)
|
| 87 |
+
try:
|
| 88 |
+
from pandarallel import pandarallel
|
| 89 |
+
pandarallel.initialize(nb_workers=self.proc, progress_bar=True)
|
| 90 |
+
processed = datas.parallel_apply(process_row, axis=1)
|
| 91 |
+
except ImportError:
|
| 92 |
+
processed = datas.progress_apply(process_row, axis=1) # tqdm 进度条
|
| 93 |
+
|
| 94 |
+
processed = processed[processed.notnull()].reset_index(drop=True)
|
| 95 |
+
|
| 96 |
+
# 合并结果
|
| 97 |
+
# pdb.set_trace()
|
| 98 |
+
for idx, (i_ids, lbl, attn, slc) in enumerate(processed):
|
| 99 |
+
input_ids[idx] = i_ids
|
| 100 |
+
labels[idx] = lbl
|
| 101 |
+
attention_mask[idx] = attn
|
| 102 |
+
slice_indices[idx] = slc
|
| 103 |
+
|
| 104 |
+
# return {
|
| 105 |
+
# "input_ids": input_ids,
|
| 106 |
+
# "labels": labels,
|
| 107 |
+
# "attention_mask": attention_mask,
|
| 108 |
+
# "slice_indices": slice_indices
|
| 109 |
+
# }
|
| 110 |
+
|
| 111 |
+
processed_len = len(processed)
|
| 112 |
+
return {
|
| 113 |
+
"input_ids": input_ids[:processed_len],
|
| 114 |
+
"labels": labels[:processed_len],
|
| 115 |
+
"attention_mask": attention_mask[:processed_len],
|
| 116 |
+
"slice_indices": slice_indices[:processed_len]
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
def __len__(self):
|
| 120 |
+
return len(self.input_ids)
|
| 121 |
+
|
| 122 |
+
def __getitem__(self, index):
|
| 123 |
+
# 直接返回预分配的张量,避免重复转换
|
| 124 |
+
return (torch.as_tensor(self.input_ids[index]),
|
| 125 |
+
torch.as_tensor(self.labels[index]),
|
| 126 |
+
torch.as_tensor(self.attention_mask[index]),
|
| 127 |
+
torch.as_tensor(self.slice_indices[index]))
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class SemiNATForSingleRound(Dataset):
|
| 131 |
+
|
| 132 |
+
def __init__(self, tokenizer, datas, max_length, proc):
|
| 133 |
+
self.tokenizer = tokenizer
|
| 134 |
+
self.max_length = max_length
|
| 135 |
+
self.proc = proc
|
| 136 |
+
# 用 apply + 并行加速预处理
|
| 137 |
+
processed = self._vectorized_preprocess(datas)
|
| 138 |
+
self.input_ids = processed["input_ids"]
|
| 139 |
+
self.labels = processed["labels"]
|
| 140 |
+
self.attention_mask = processed["attention_mask"]
|
| 141 |
+
self.slice_indices = processed["slice_indices"]
|
| 142 |
+
|
| 143 |
+
def _vectorized_preprocess(self, datas):
|
| 144 |
+
# 批量预分配内存
|
| 145 |
+
input_ids = np.zeros((len(datas), self.max_length), dtype=np.int64)
|
| 146 |
+
attention_mask = np.zeros((len(datas), self.max_length),
|
| 147 |
+
dtype=np.int64)
|
| 148 |
+
labels = np.full((len(datas), self.max_length), -100, dtype=np.int64)
|
| 149 |
+
slice_indices = np.full((len(datas), self.max_length),
|
| 150 |
+
-1,
|
| 151 |
+
dtype=np.int64)
|
| 152 |
+
|
| 153 |
+
# 批量处理所有行的 messages
|
| 154 |
+
def process_row(row):
|
| 155 |
+
total_inputs = []
|
| 156 |
+
sample_slice = []
|
| 157 |
+
|
| 158 |
+
for msg in row['messages']:
|
| 159 |
+
# 批量分词(假设 msg['content'] 是文本列表)
|
| 160 |
+
inputs = self.tokenizer(msg['content'],
|
| 161 |
+
padding=False,
|
| 162 |
+
truncation=False,
|
| 163 |
+
add_special_tokens=False).input_ids
|
| 164 |
+
total_inputs.extend(inputs)
|
| 165 |
+
# 直接使用列表扩展 slice
|
| 166 |
+
sample_slice.extend(msg['split_pos'])
|
| 167 |
+
|
| 168 |
+
# 截断或填充逻辑
|
| 169 |
+
seq_len = min(len(total_inputs), self.max_length)
|
| 170 |
+
# 输入和标签
|
| 171 |
+
input_ids = total_inputs[:self.max_length] + [
|
| 172 |
+
self.tokenizer.pad_token_id
|
| 173 |
+
] * (self.max_length - seq_len)
|
| 174 |
+
labels = total_inputs[:self.max_length] + [-100] * (
|
| 175 |
+
self.max_length - seq_len)
|
| 176 |
+
# attention_mask
|
| 177 |
+
attention_mask = [1] * seq_len + [0] * (self.max_length - seq_len)
|
| 178 |
+
# slice_indices
|
| 179 |
+
slice_arr = np.array(sample_slice[:self.max_length] + [-1] *
|
| 180 |
+
(self.max_length - len(sample_slice)))
|
| 181 |
+
slice_arr[slice_arr > self.max_length] = -1 # 过滤超长位置
|
| 182 |
+
|
| 183 |
+
return input_ids, labels, attention_mask, slice_arr
|
| 184 |
+
|
| 185 |
+
# 并行处理所有行(需安装 pandarallel)
|
| 186 |
+
try:
|
| 187 |
+
from pandarallel import pandarallel
|
| 188 |
+
pandarallel.initialize(nb_workers=self.proc, progress_bar=True)
|
| 189 |
+
processed = datas.parallel_apply(process_row, axis=1)
|
| 190 |
+
except:
|
| 191 |
+
processed = datas.progress_apply(process_row, axis=1) # tqdm 进度条
|
| 192 |
+
|
| 193 |
+
# 合并结果
|
| 194 |
+
for idx, (i_ids, lbl, attn, slc) in enumerate(processed):
|
| 195 |
+
input_ids[idx] = i_ids
|
| 196 |
+
labels[idx] = lbl
|
| 197 |
+
attention_mask[idx] = attn
|
| 198 |
+
slice_indices[idx] = slc
|
| 199 |
+
|
| 200 |
+
return {
|
| 201 |
+
"input_ids": input_ids,
|
| 202 |
+
"labels": labels,
|
| 203 |
+
"attention_mask": attention_mask,
|
| 204 |
+
"slice_indices": slice_indices
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
def __len__(self):
|
| 208 |
+
return len(self.input_ids)
|
| 209 |
+
|
| 210 |
+
def __getitem__(self, index):
|
| 211 |
+
# 直接返回预分配的张量,避免重复转换
|
| 212 |
+
return (torch.as_tensor(self.input_ids[index]),
|
| 213 |
+
torch.as_tensor(self.labels[index]),
|
| 214 |
+
torch.as_tensor(self.attention_mask[index]),
|
| 215 |
+
torch.as_tensor(self.slice_indices[index]))
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class SemiNATDatasetForPretrain(Dataset):
|
| 219 |
+
# data is jsonl.zstd or json.gz file
|
| 220 |
+
def __init__(self,
|
| 221 |
+
tokenizer,
|
| 222 |
+
data_files,
|
| 223 |
+
max_length,
|
| 224 |
+
proc,
|
| 225 |
+
cache_path=None):
|
| 226 |
+
if cache_path and os.path.exists(cache_path):
|
| 227 |
+
print(f"[INFO] Loading cached data from {cache_path}")
|
| 228 |
+
cached = torch.load(cache_path)
|
| 229 |
+
self.input_ids = cached["input_ids"]
|
| 230 |
+
self.labels = cached["labels"]
|
| 231 |
+
self.attention_mask = cached["attention_mask"]
|
| 232 |
+
self.slice_indices = cached["slice_indices"]
|
| 233 |
+
return
|
| 234 |
+
data = []
|
| 235 |
+
for filename in data_files:
|
| 236 |
+
if filename.endswith('.zstd'):
|
| 237 |
+
data.append(
|
| 238 |
+
pd.DataFrame([
|
| 239 |
+
json.loads(line) for line in
|
| 240 |
+
self._decompress_zst_to_string(filename).splitlines()
|
| 241 |
+
]))
|
| 242 |
+
else: # json.gz file, each line a json
|
| 243 |
+
with gzip.open(filename, 'rt', encoding='utf-8') as f:
|
| 244 |
+
data.append(pd.DataFrame([json.loads(line) for line in f]))
|
| 245 |
+
data = pd.concat(data, ignore_index=True)
|
| 246 |
+
|
| 247 |
+
self.tokenizer = tokenizer
|
| 248 |
+
self.max_length = max_length
|
| 249 |
+
self.proc = proc
|
| 250 |
+
|
| 251 |
+
processed = self._vectorized_preprocess(data)
|
| 252 |
+
self.input_ids = processed["input_ids"]
|
| 253 |
+
self.labels = processed["labels"]
|
| 254 |
+
self.attention_mask = processed["attention_mask"]
|
| 255 |
+
self.slice_indices = processed["slice_indices"]
|
| 256 |
+
|
| 257 |
+
if type(self.input_ids) != torch.Tensor:
|
| 258 |
+
self.input_ids = torch.tensor(self.input_ids, dtype=torch.long)
|
| 259 |
+
self.labels = torch.tensor(self.labels, dtype=torch.long)
|
| 260 |
+
self.attention_mask = torch.tensor(self.attention_mask,
|
| 261 |
+
dtype=torch.long)
|
| 262 |
+
self.slice_indices = torch.tensor(self.slice_indices,
|
| 263 |
+
dtype=torch.long)
|
| 264 |
+
|
| 265 |
+
def _decompress_zst_to_string(self, input_file):
|
| 266 |
+
with open(input_file, 'rb') as f:
|
| 267 |
+
dctx = zstd.ZstdDecompressor()
|
| 268 |
+
with dctx.stream_reader(f) as reader:
|
| 269 |
+
text_stream = io.TextIOWrapper(reader, encoding='utf-8')
|
| 270 |
+
return text_stream.read() # 读取为字符串
|
| 271 |
+
|
| 272 |
+
def _vectorized_preprocess(self, data):
|
| 273 |
+
input_ids = np.zeros((len(data), self.max_length), dtype=np.int64)
|
| 274 |
+
attention_mask = np.zeros((len(data), self.max_length), dtype=np.int64)
|
| 275 |
+
labels = np.full((len(data), self.max_length), -100, dtype=np.int64)
|
| 276 |
+
slice_indices = np.full((len(data), self.max_length),
|
| 277 |
+
-1,
|
| 278 |
+
dtype=np.int64)
|
| 279 |
+
|
| 280 |
+
def process_row(row):
|
| 281 |
+
inputs = self.tokenizer(row['text'],
|
| 282 |
+
padding=False,
|
| 283 |
+
truncation=False,
|
| 284 |
+
add_special_tokens=False).input_ids
|
| 285 |
+
# slice to 8-token segments. that is, sample_slice is [1, 9, 17, 25, ...]
|
| 286 |
+
sample_slice = (np.arange(0, len(inputs), 8) + 1).tolist()
|
| 287 |
+
# add the end
|
| 288 |
+
if len(inputs) % 8 != 1:
|
| 289 |
+
sample_slice.append(len(inputs))
|
| 290 |
+
|
| 291 |
+
# 截断或填充逻辑
|
| 292 |
+
seq_len = min(len(inputs), self.max_length)
|
| 293 |
+
# 输入和标签
|
| 294 |
+
input_ids = inputs[:self.max_length] + [
|
| 295 |
+
self.tokenizer.pad_token_id
|
| 296 |
+
] * (self.max_length - seq_len)
|
| 297 |
+
labels = [
|
| 298 |
+
50279 # <EOS>
|
| 299 |
+
] + inputs[:self.max_length -
|
| 300 |
+
1] + [-100] * (self.max_length - 1 - seq_len)
|
| 301 |
+
# attention_mask
|
| 302 |
+
attention_mask = [1] * seq_len + [0] * (self.max_length - seq_len)
|
| 303 |
+
# slice_indices
|
| 304 |
+
slice_arr = np.array(sample_slice[:self.max_length] + [-1] *
|
| 305 |
+
(self.max_length - len(sample_slice)))
|
| 306 |
+
slice_arr[slice_arr > self.max_length] = -1 # 过滤超长位置
|
| 307 |
+
|
| 308 |
+
return input_ids, labels, attention_mask, slice_arr
|
| 309 |
+
|
| 310 |
+
try:
|
| 311 |
+
from pandarallel import pandarallel
|
| 312 |
+
pandarallel.initialize(nb_workers=self.proc, progress_bar=True)
|
| 313 |
+
processed = data.parallel_apply(process_row, axis=1)
|
| 314 |
+
except ImportError:
|
| 315 |
+
processed = data.progress_apply(process_row, axis=1) # tqdm 进度条
|
| 316 |
+
|
| 317 |
+
# 合并结果
|
| 318 |
+
for idx, (i_ids, lbl, attn, slc) in enumerate(processed):
|
| 319 |
+
input_ids[idx] = i_ids
|
| 320 |
+
labels[idx] = lbl
|
| 321 |
+
attention_mask[idx] = attn
|
| 322 |
+
slice_indices[idx] = slc
|
| 323 |
+
|
| 324 |
+
return {
|
| 325 |
+
"input_ids": input_ids,
|
| 326 |
+
"labels": labels,
|
| 327 |
+
"attention_mask": attention_mask,
|
| 328 |
+
"slice_indices": slice_indices
|
| 329 |
+
}
|
| 330 |
+
|
| 331 |
+
def __len__(self):
|
| 332 |
+
return len(self.input_ids)
|
| 333 |
+
|
| 334 |
+
def __getitem__(self, index):
|
| 335 |
+
return (self.input_ids[index], self.labels[index],
|
| 336 |
+
self.attention_mask[index], self.slice_indices[index])
|