import csv import numpy as np from scipy.stats import spearmanr, kendalltau def add_to_csv(input_files,human_score_csv): output_rows = [] for idx in [0,10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190]: for filename in input_files: with open(filename, newline='', encoding='utf-8') as f: reader = csv.reader(f) header = next(reader) # 跳过表头 rows = list(reader) if idx < len(rows): for row in rows: if row[0] == f"{idx+1:04d}.png": target_row = row break # row = rows[idx] # 倒数第三和倒数第二个元素 third_last = target_row[-3] #align score second_last = target_row[-2] #quality score output_rows.append([third_last, second_last]) # 2. 读取原CSV内容 with open(human_score_csv, newline='', encoding='utf-8') as f: reader = csv.reader(f) original_rows = list(reader) # 3. 检查行数是否匹配 if len(original_rows) - 1 != len(output_rows): raise ValueError("原CSV数据行数与新列数据行数不一致,请检查!") # 4. 拼接新列,写入新文件 with open(human_score_csv, 'w', newline='', encoding='utf-8') as f: writer = csv.writer(f) # 写表头 writer.writerow(original_rows[0][0:9] + ['qwen_alignment', 'qwen_quality']) # 写数据行 for orig_row, new_col in zip(original_rows[1:], output_rows): writer.writerow(orig_row[0:9] + new_col) def corr(combined_csv): avg_align_list = [] avg_quality_list= [] qwen_align_list = [] qwen_quality_list = [] with open(combined_csv, newline='', encoding='utf-8') as f: reader = csv.reader(f) header = next(reader) # 跳过表头 for row in reader: # 取倒数第3、4、5列 alignment_123 = [float(row[-8]), float(row[-7]), float(row[-6])] quality_123 = [float(row[-5]), float(row[-4]), float(row[-3])] alignment_avg = np.mean(alignment_123) quality_avg = np.mean(quality_123) avg_align_list.append(alignment_avg) avg_quality_list.append(quality_avg) # 取倒数第2列 qwen_alignment = float(row[-2]) qwen_quality = float(row[-1]) qwen_align_list.append(qwen_alignment) qwen_quality_list.append(qwen_quality) # 2. 计算相关性 align_spearman_corr, align_spearman_p = spearmanr(avg_align_list, qwen_align_list) align_kendall_corr, align_kendall_p = kendalltau(avg_align_list, qwen_align_list) quality_spearman_corr, quality_spearman_p = spearmanr(avg_quality_list, qwen_quality_list) quality_kendall_corr, quality_kendall_p = kendalltau(avg_quality_list, qwen_quality_list) print(f"align Spearman correlation: {align_spearman_corr:.4f}, p-value: {align_spearman_p:.4g}") print(f"align Kendall correlation: {align_kendall_corr:.4f}, p-value: {align_kendall_p:.4g}") print(f"quality Spearman correlation: {quality_spearman_corr:.4f}, p-value: {quality_spearman_p:.4g}") print(f"quality Kendall correlation: {quality_kendall_corr:.4f}, p-value: {quality_kendall_p:.4g}") if __name__ == "__main__": # input_files = [ # "/group/xihuiliu/sky/reasoning/csv/idiom/bagel.csv", # "/group/xihuiliu/sky/reasoning/csv/idiom/GPT.csv", # "/group/xihuiliu/sky/reasoning/csv/idiom/hidream.csv", # "/group/xihuiliu/sky/reasoning/csv/idiom/janus_pro_7B.csv", # "/group/xihuiliu/sky/reasoning/csv/idiom/sd30_medium.csv", # ] # human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/idiom.csv" input_files = [ "/group/xihuiliu/sky/reasoning/csv/text_image_new/bagel.csv", "/group/xihuiliu/sky/reasoning/csv/text_image_new/GPT.csv", "/group/xihuiliu/sky/reasoning/csv/text_image_new/hidream.csv", "/group/xihuiliu/sky/reasoning/csv/text_image_new/janus_pro_7B.csv", "/group/xihuiliu/sky/reasoning/csv/text_image_new/sd30_medium.csv", ] human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/text_image.csv" # input_files = [ # "/group/xihuiliu/sky/reasoning/csv/entity/bagel.csv", # "/group/xihuiliu/sky/reasoning/csv/entity/GPT.csv", # "/group/xihuiliu/sky/reasoning/csv/entity/hidream.csv", # "/group/xihuiliu/sky/reasoning/csv/entity/janus_pro_7B.csv", # "/group/xihuiliu/sky/reasoning/csv/entity/sd30_medium.csv", # ] # human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/entity.csv" # input_files = [ # "/group/xihuiliu/sky/reasoning/csv/physics/bagel.csv", # "/group/xihuiliu/sky/reasoning/csv/physics/GPT.csv", # "/group/xihuiliu/sky/reasoning/csv/physics/hidream.csv", # "/group/xihuiliu/sky/reasoning/csv/physics/janus_pro_7B.csv", # "/group/xihuiliu/sky/reasoning/csv/physics/sd30_medium.csv", # ] # human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/physics.csv" # add_to_csv(input_files,human_score_csv) corr(human_score_csv) #idiom # align Spearman correlation: 0.6723, p-value: 1.871e-14 # align Kendall correlation: 0.5246, p-value: 6.27e-13 # quality Spearman correlation: 0.1883, p-value: 0.06068 # quality Kendall correlation: 0.1544, p-value: 0.05925 #text image # align Spearman correlation: 0.7426, p-value: 9.281e-19 # align Kendall correlation: 0.5829, p-value: 1.527e-15 # quality Spearman correlation: 0.4611, p-value: 1.378e-06 # quality Kendall correlation: 0.3457, p-value: 5.094e-06 # entity # align Spearman correlation: 0.5180, p-value: 3.391e-08 # align Kendall correlation: 0.4098, p-value: 2.071e-07 # quality Spearman correlation: 0.3436, p-value: 0.0004646 # quality Kendall correlation: 0.3018, p-value: 0.0006653