temp / human_corr_vqa_idiom.py
Kaiyue's picture
Upload folder using huggingface_hub
56b30d7 verified
import csv
import numpy as np
from scipy.stats import spearmanr, kendalltau
def add_to_csv(input_files,human_score_csv):
output_rows = []
for idx in [0,10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190]:
for filename in input_files:
with open(filename, newline='', encoding='utf-8') as f:
reader = csv.reader(f)
header = next(reader) # 跳过表头
rows = list(reader)
if idx < len(rows):
for row in rows:
if row[0] == f"{idx+1:04d}.png":
target_row = row
break
# row = rows[idx]
# 倒数第三和倒数第二个元素
third_last = target_row[-3] #align score
second_last = target_row[-2] #quality score
output_rows.append([third_last, second_last])
# 2. 读取原CSV内容
with open(human_score_csv, newline='', encoding='utf-8') as f:
reader = csv.reader(f)
original_rows = list(reader)
# 3. 检查行数是否匹配
if len(original_rows) - 1 != len(output_rows):
raise ValueError("原CSV数据行数与新列数据行数不一致,请检查!")
# 4. 拼接新列,写入新文件
with open(human_score_csv, 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
# 写表头
writer.writerow(original_rows[0][0:10] + ['qwen_alignment', 'qwen_quality'])
# 写数据行
for orig_row, new_col in zip(original_rows[1:], output_rows):
writer.writerow(orig_row[0:10] + new_col)
def corr(combined_csv):
avg_align_list = []
avg_quality_list= []
qwen_align_list = []
qwen_quality_list = []
with open(combined_csv, newline='', encoding='utf-8') as f:
reader = csv.reader(f)
header = next(reader) # 跳过表头
for row in reader:
# 取倒数第3、4、5列
alignment_123 = [float(row[-8]), float(row[-7]), float(row[-6])]
# quality_123 = [float(row[-5]), float(row[-4]), float(row[-3])]
alignment_avg = np.mean(alignment_123)
# quality_avg = np.mean(quality_123)
avg_align_list.append(alignment_avg)
# avg_quality_list.append(quality_avg)
# 取倒数第2列
qwen_alignment = float(row[-2])
qwen_quality = float(row[-1])
qwen_alignment_qualilty = 0.9*qwen_alignment + 0.1*qwen_quality
# qwen_align_list.append(qwen_alignment)
# qwen_quality_list.append(qwen_quality)
qwen_align_list.append(qwen_alignment_qualilty)
# 2. 计算相关性
align_spearman_corr, align_spearman_p = spearmanr(avg_align_list, qwen_align_list)
align_kendall_corr, align_kendall_p = kendalltau(avg_align_list, qwen_align_list)
# quality_spearman_corr, quality_spearman_p = spearmanr(avg_quality_list, qwen_quality_list)
# quality_kendall_corr, quality_kendall_p = kendalltau(avg_quality_list, qwen_quality_list)
print(f"align Spearman correlation: {align_spearman_corr:.4f}, p-value: {align_spearman_p:.4g}")
print(f"align Kendall correlation: {align_kendall_corr:.4f}, p-value: {align_kendall_p:.4g}")
print(f"{align_kendall_corr:.4f} & {align_spearman_corr:.4f} &")
# print(f"quality Spearman correlation: {quality_spearman_corr:.4f}, p-value: {quality_spearman_p:.4g}")
# print(f"quality Kendall correlation: {quality_kendall_corr:.4f}, p-value: {quality_kendall_p:.4g}")
if __name__ == "__main__":
# human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/idiom_vqa.csv"
# human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/idiom_clip.csv"
input_files = [
"/group/xihuiliu/sky/reasoning/csv/idiom/bagel.csv",
"/group/xihuiliu/sky/reasoning/csv/idiom/GPT.csv",
"/group/xihuiliu/sky/reasoning/csv/idiom/hidream.csv",
"/group/xihuiliu/sky/reasoning/csv/idiom/janus_pro_7B.csv",
"/group/xihuiliu/sky/reasoning/csv/idiom/sd30_medium.csv",
]
human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/idiom.csv"
# input_files = [
# "/group/xihuiliu/sky/reasoning/csv/entity/bagel.csv",
# "/group/xihuiliu/sky/reasoning/csv/entity/GPT.csv",
# "/group/xihuiliu/sky/reasoning/csv/entity/hidream.csv",
# "/group/xihuiliu/sky/reasoning/csv/entity/janus_pro_7B.csv",
# "/group/xihuiliu/sky/reasoning/csv/entity/sd30_medium.csv",
# ]
# human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/entity.csv"
# input_files = [
# "/group/xihuiliu/sky/reasoning/csv/physics/bagel.csv",
# "/group/xihuiliu/sky/reasoning/csv/physics/GPT.csv",
# "/group/xihuiliu/sky/reasoning/csv/physics/hidream.csv",
# "/group/xihuiliu/sky/reasoning/csv/physics/janus_pro_7B.csv",
# "/group/xihuiliu/sky/reasoning/csv/physics/sd30_medium.csv",
# ]
# human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/physics.csv"
add_to_csv(input_files,human_score_csv)
corr(human_score_csv)
#idiom
# align Spearman correlation: 0.6723, p-value: 1.871e-14
# align Kendall correlation: 0.5246, p-value: 6.27e-13
# quality Spearman correlation: 0.1883, p-value: 0.06068
# quality Kendall correlation: 0.1544, p-value: 0.05925
# vqa
# align Spearman correlation: 0.5672, p-value: 7.622e-10
# align Kendall correlation: 0.4091, p-value: 7.273e-09
#clip
# align Spearman correlation: 0.4348, p-value: 6.161e-06
# align Kendall correlation: 0.3186, p-value: 6.646e-06