File size: 6,200 Bytes
56b30d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import csv
import numpy as np
from scipy.stats import spearmanr, kendalltau

def add_to_csv(input_files,human_score_csv):
    output_rows = []
    for idx in [0,10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190]:
        for filename in input_files:
            with open(filename, newline='', encoding='utf-8') as f:
                reader = csv.reader(f)
                header = next(reader)  # 跳过表头
                rows = list(reader)
                if idx < len(rows):
                    for row in rows:
                        if row[0] == f"{idx+1:04d}.png":
                            target_row = row
                            break
                    # row = rows[idx]
                    
                    # 倒数第三和倒数第二个元素
                    third_last = target_row[-3] #align score
                    second_last = target_row[-2] #quality score
                    output_rows.append([third_last, second_last])
                        
    # 2. 读取原CSV内容
    with open(human_score_csv, newline='', encoding='utf-8') as f:
        reader = csv.reader(f)
        original_rows = list(reader)

    # 3. 检查行数是否匹配
    if len(original_rows) - 1 != len(output_rows):
        raise ValueError("原CSV数据行数与新列数据行数不一致,请检查!")

    # 4. 拼接新列,写入新文件
    with open(human_score_csv, 'w', newline='', encoding='utf-8') as f:
        writer = csv.writer(f)
        # 写表头
        writer.writerow(original_rows[0][0:9] + ['qwen_alignment', 'qwen_quality'])
        # 写数据行
        for orig_row, new_col in zip(original_rows[1:], output_rows):
            writer.writerow(orig_row[0:9] + new_col)
            
            
def corr(combined_csv):
    avg_align_list = []
    avg_quality_list= []
    qwen_align_list = []
    qwen_quality_list = []
    
    with open(combined_csv, newline='', encoding='utf-8') as f:
        reader = csv.reader(f)
        header = next(reader)  # 跳过表头
        for row in reader:
            # 取倒数第3、4、5列
            alignment_123 = [float(row[-8]), float(row[-7]), float(row[-6])]
            quality_123 = [float(row[-5]), float(row[-4]), float(row[-3])]
            alignment_avg = np.mean(alignment_123)
            quality_avg = np.mean(quality_123)
            avg_align_list.append(alignment_avg)
            avg_quality_list.append(quality_avg)
            # 取倒数第2列
            qwen_alignment = float(row[-2])
            qwen_quality = float(row[-1])
            qwen_align_list.append(qwen_alignment)
            qwen_quality_list.append(qwen_quality)

    # 2. 计算相关性
    align_spearman_corr, align_spearman_p = spearmanr(avg_align_list, qwen_align_list)
    align_kendall_corr, align_kendall_p = kendalltau(avg_align_list, qwen_align_list)
    
    quality_spearman_corr, quality_spearman_p = spearmanr(avg_quality_list, qwen_quality_list)
    quality_kendall_corr, quality_kendall_p = kendalltau(avg_quality_list, qwen_quality_list)

    print(f"align Spearman correlation: {align_spearman_corr:.4f}, p-value: {align_spearman_p:.4g}")
    print(f"align Kendall correlation: {align_kendall_corr:.4f}, p-value: {align_kendall_p:.4g}")

    print(f"quality Spearman correlation: {quality_spearman_corr:.4f}, p-value: {quality_spearman_p:.4g}")
    print(f"quality Kendall correlation: {quality_kendall_corr:.4f}, p-value: {quality_kendall_p:.4g}")
    
    
if __name__ == "__main__":
    

    # input_files = [
    #     "/group/xihuiliu/sky/reasoning/csv/idiom/bagel.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/idiom/GPT.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/idiom/hidream.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/idiom/janus_pro_7B.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/idiom/sd30_medium.csv",
    # ]
    # human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/idiom.csv"
    
    input_files = [
        "/group/xihuiliu/sky/reasoning/csv/text_image_new/bagel.csv",
        "/group/xihuiliu/sky/reasoning/csv/text_image_new/GPT.csv",
        "/group/xihuiliu/sky/reasoning/csv/text_image_new/hidream.csv",
        "/group/xihuiliu/sky/reasoning/csv/text_image_new/janus_pro_7B.csv",
        "/group/xihuiliu/sky/reasoning/csv/text_image_new/sd30_medium.csv",
    ]
    human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/text_image.csv"
    
    # input_files = [
    #     "/group/xihuiliu/sky/reasoning/csv/entity/bagel.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/entity/GPT.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/entity/hidream.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/entity/janus_pro_7B.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/entity/sd30_medium.csv",
    # ]
    # human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/entity.csv"
    
    
    # input_files = [
    #     "/group/xihuiliu/sky/reasoning/csv/physics/bagel.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/physics/GPT.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/physics/hidream.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/physics/janus_pro_7B.csv",
    #     "/group/xihuiliu/sky/reasoning/csv/physics/sd30_medium.csv",
    # ]
    # human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/physics.csv"
    
    # add_to_csv(input_files,human_score_csv)

    corr(human_score_csv)
    
    
#idiom
# align Spearman correlation: 0.6723, p-value: 1.871e-14
# align Kendall correlation: 0.5246, p-value: 6.27e-13
# quality Spearman correlation: 0.1883, p-value: 0.06068
# quality Kendall correlation: 0.1544, p-value: 0.05925

#text image
# align Spearman correlation: 0.7426, p-value: 9.281e-19
# align Kendall correlation: 0.5829, p-value: 1.527e-15
# quality Spearman correlation: 0.4611, p-value: 1.378e-06
# quality Kendall correlation: 0.3457, p-value: 5.094e-06

# entity
# align Spearman correlation: 0.5180, p-value: 3.391e-08
# align Kendall correlation: 0.4098, p-value: 2.071e-07
# quality Spearman correlation: 0.3436, p-value: 0.0004646
# quality Kendall correlation: 0.3018, p-value: 0.0006653