File size: 8,536 Bytes
56b30d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import csv
import numpy as np
from scipy.stats import spearmanr, kendalltau
def add_to_csv(input_files,human_score_csv):
output_rows = []
for idx in [0,10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190]:
for filename in input_files:
with open(filename, newline='', encoding='utf-8') as f:
reader = csv.reader(f)
header = next(reader) # 跳过表头
rows = list(reader)
if idx < len(rows):
for row in rows:
if row[0] == f"{idx+1:04d}.png":
target_row = row
break
# print(row)
# 倒数第三和倒数第二个元素
fourth_last = target_row[-4] #reason score
third_last = target_row[-3] #align score
second_last = target_row[-2] #quality score
output_rows.append([fourth_last,third_last, second_last])
# 2. 读取原CSV内容
with open(human_score_csv, newline='', encoding='utf-8') as f:
reader = csv.reader(f)
original_rows = list(reader)
# 3. 检查行数是否匹配
if len(original_rows) - 1 != len(output_rows):
raise ValueError("原CSV数据行数与新列数据行数不一致,请检查!")
# 4. 拼接新列,写入新文件
with open(human_score_csv, 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
# 写表头
writer.writerow(original_rows[0][0:10] + ['qwen_reason','qwen_alignment', 'qwen_quality'])
# 写数据行
for orig_row, new_col in zip(original_rows[1:], output_rows):
writer.writerow(orig_row[0:10] + new_col)
def corr(combined_csv):
avg_align_list = []
avg_quality_list= []
qwen_reason_list = []
qwen_align_list = []
qwen_quality_list = []
with open(combined_csv, newline='', encoding='utf-8') as f:
reader = csv.reader(f)
header = next(reader) # 跳过表头
for row in reader:
# 取倒数第3、4、5列
alignment_123 = [float(row[-8]), float(row[-7]), float(row[-6])]
quality_123 = [float(row[-5]), float(row[-4]), float(row[-3])]
alignment_avg = np.mean(alignment_123)
quality_avg = np.mean(quality_123)
avg_align_list.append(alignment_avg)
avg_quality_list.append(quality_avg)
# 取倒数第2列
qwen_reason = float(row[-3])
qwen_alignment = float(row[-2])
qwen_quality = float(row[-1])
qwen_reason_list.append(qwen_reason)
qwen_align_list.append(qwen_alignment)
qwen_quality_list.append(qwen_quality)
# 2. 计算相关性
weight1 = 0.7
weight2 = 0.3
qwen_total_align = [weight1 * v1 + weight2 * v2 for v1, v2 in zip(qwen_reason_list, qwen_align_list)]
align_spearman_corr, align_spearman_p = spearmanr(avg_align_list, qwen_total_align)
align_kendall_corr, align_kendall_p = kendalltau(avg_align_list, qwen_total_align)
quality_spearman_corr, quality_spearman_p = spearmanr(avg_quality_list, qwen_quality_list)
quality_kendall_corr, quality_kendall_p = kendalltau(avg_quality_list, qwen_quality_list)
print(f"align Spearman correlation: {align_spearman_corr:.4f}, p-value: {align_spearman_p:.4g}")
print(f"align Kendall correlation: {align_kendall_corr:.4f}, p-value: {align_kendall_p:.4g}")
print(f"quality Spearman correlation: {quality_spearman_corr:.4f}, p-value: {quality_spearman_p:.4g}")
print(f"quality Kendall correlation: {quality_kendall_corr:.4f}, p-value: {quality_kendall_p:.4g}")
if __name__ == "__main__":
# input_files = [
# "/group/xihuiliu/sky/reasoning/csv/idiom/bagel.csv",
# "/group/xihuiliu/sky/reasoning/csv/idiom/GPT.csv",
# "/group/xihuiliu/sky/reasoning/csv/idiom/hidream.csv",
# "/group/xihuiliu/sky/reasoning/csv/idiom/janus_pro_7B.csv",
# "/group/xihuiliu/sky/reasoning/csv/idiom/sd30_medium.csv",
# ]
# human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/idiom.csv"
# input_files = [
# "/group/xihuiliu/sky/reasoning/csv/text_image_new/bagel.csv",
# "/group/xihuiliu/sky/reasoning/csv/text_image_new/GPT.csv",
# "/group/xihuiliu/sky/reasoning/csv/text_image_new/hidream.csv",
# "/group/xihuiliu/sky/reasoning/csv/text_image_new/janus_pro_7B.csv",
# "/group/xihuiliu/sky/reasoning/csv/text_image_new/sd30_medium.csv",
# ]
# human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/text_image.csv"
# input_files = [
# "/group/xihuiliu/sky/reasoning/csv/entity/bagel.csv",
# "/group/xihuiliu/sky/reasoning/csv/entity/GPT.csv",
# "/group/xihuiliu/sky/reasoning/csv/entity/hidream.csv",
# "/group/xihuiliu/sky/reasoning/csv/entity/janus_pro_7B.csv",
# "/group/xihuiliu/sky/reasoning/csv/entity/sd30_medium.csv",
# ]
# human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/entity.csv"
input_files = [
"/group/xihuiliu/sky/reasoning/csv/physics/bagel.csv",
"/group/xihuiliu/sky/reasoning/csv/physics/GPT.csv",
"/group/xihuiliu/sky/reasoning/csv/physics/hidream.csv",
"/group/xihuiliu/sky/reasoning/csv/physics/janus_pro_7B.csv",
"/group/xihuiliu/sky/reasoning/csv/physics/sd30_medium.csv",
]
human_score_csv = "/group/xihuiliu/sky/reasoning/human_eval/human_score/physics.csv"
add_to_csv(input_files,human_score_csv)
corr(human_score_csv)
#idiom
# align Spearman correlation: 0.4674, p-value: 9.474e-07
# align Kendall correlation: 0.3498, p-value: 1.911e-06
# quality Spearman correlation: 0.3305, p-value: 0.0007828
# quality Kendall correlation: 0.2622, p-value: 0.0007976
#text image
# align Spearman correlation: 0.7675, p-value: 1.246e-20
# align Kendall correlation: 0.6081, p-value: 9.005e-17
# quality Spearman correlation: 0.4186, p-value: 1.465e-05
# quality Kendall correlation: 0.3257, p-value: 3.135e-05
# entity 0.9 0.1
# align Spearman correlation: 0.6091, p-value: 1.771e-11
# align Kendall correlation: 0.4673, p-value: 3.437e-10
# quality Spearman correlation: 0.3947, p-value: 4.824e-05
# quality Kendall correlation: 0.3141, p-value: 0.0001425
# entity 0.8 0.2
# align Spearman correlation: 0.6106, p-value: 1.529e-11
# align Kendall correlation: 0.4693, p-value: 2.989e-10
# quality Spearman correlation: 0.3947, p-value: 4.824e-05
# quality Kendall correlation: 0.3141, p-value: 0.0001425
# entity 0.7 0.3 THIS!!!!!!!!!!!!
# align Spearman correlation: 0.6148, p-value: 1.012e-11
# align Kendall correlation: 0.4732, p-value: 2.094e-10
# quality Spearman correlation: 0.3947, p-value: 4.824e-05
# quality Kendall correlation: 0.3141, p-value: 0.0001425
# entity 0.6 0.4
# align Spearman correlation: 0.6098, p-value: 1.646e-11
# align Kendall correlation: 0.4678, p-value: 3.428e-10
# quality Spearman correlation: 0.3947, p-value: 4.824e-05
# quality Kendall correlation: 0.3141, p-value: 0.0001425
# physics 0.9 0.1
# align Spearman correlation: 0.5756, p-value: 3.746e-10
# align Kendall correlation: 0.4477, p-value: 6.166e-10
# quality Spearman correlation: 0.2652, p-value: 0.007651
# quality Kendall correlation: 0.2080, p-value: 0.007783
# physics 0.8 0.2
# align Spearman correlation: 0.5773, p-value: 3.239e-10
# align Kendall correlation: 0.4496, p-value: 5.381e-10
# quality Spearman correlation: 0.2652, p-value: 0.007651
# quality Kendall correlation: 0.2080, p-value: 0.007783
# physics 0.7 0.3
# align Spearman correlation: 0.5777, p-value: 3.131e-10
# align Kendall correlation: 0.4490, p-value: 5.498e-10
# quality Spearman correlation: 0.2652, p-value: 0.007651
# quality Kendall correlation: 0.2080, p-value: 0.007783
# physics 0.6 0.4
# align Spearman correlation: 0.5839, p-value: 1.811e-10
# align Kendall correlation: 0.4566, p-value: 3.858e-10
# quality Spearman correlation: 0.2652, p-value: 0.007651
# quality Kendall correlation: 0.2080, p-value: 0.007783
# physics 0.5 0.5
# align Spearman correlation: 0.5827, p-value: 2.008e-10
# align Kendall correlation: 0.4594, p-value: 3.317e-10
# quality Spearman correlation: 0.2652, p-value: 0.007651
# quality Kendall correlation: 0.2080, p-value: 0.007783 |