from lightning import LightningDataModule import torch.utils.data as data from Dataset import TrajectoryDataset, EmptyDataset from SimulateOnEnv import batch_simulate_on_environment import numpy as np from copy import deepcopy import sys import random def rsa_reward(num_feature, min_turns, conv_turn, gamma=2.0): """ Nonlinear normalization function, returns u ∈ [0, 1] - num_feature = min_turns -> u = 1 - num_feature = conv_turn -> u = 0 - The closer to min_turns, the slower it approaches 1 """ if num_feature == min_turns: return 1 # Normalize to [0,1] u = (conv_turn - num_feature) / (min_turns - num_feature) # Keep direction (support num_feature < min_turns) return max(0, min(1, u**gamma)) class Task(LightningDataModule): def __init__(self, batch_size: int, n_traj_eval: int, **kwargs): super().__init__(**kwargs) self.batch_size = batch_size self.eval_batch_size = self.batch_size self.n_traj_eval = n_traj_eval # Set Defaults self.shuffle = True self.drop_last = True # skips last batch to make sure gradient accumulation works as intended def setup(self, stage: str): raise NotImplementedError def train_dataloader(self): return data.DataLoader( dataset=self.dataset, batch_size=self.batch_size, shuffle=self.shuffle, drop_last=self.drop_last, num_workers=8, pin_memory=True, persistent_workers=True, ) def val_dataloader(self): return data.DataLoader( dataset=EmptyDataset(length=self.n_traj_eval), batch_size=self.eval_batch_size, pin_memory=True, ) def get_eval_log(self, **kwargs): pass def teardown(self, stage: str): # Used to clean-up when the run is finished pass class TwentyQuestions(Task): def __init__(self, batch_size: int, n_traj_eval: int, word_list=None, **kwargs): super().__init__(batch_size, n_traj_eval, **kwargs) self.word_list = word_list self.max_horizon = 20 def setup(self, stage: str): self.dataset = self.read_data() self.dataset.check_consistency() print( "\n *** Dataset Trimming Now Disabled. Please Called the Subroutine for triming" ) def read_data(self): import json from Dataset import TrajectoryDataset f = open("datasets/20q_train.json") data = json.load(f) dataset = TrajectoryDataset() for game in data: assert len(game["lines"]) <= 20 history = "Questions:\n" # assertion is checked with history = '' for interaction in game["lines"]: yesAnswer = interaction[-5:] == " Yes." noAnswer = interaction[-4:] == " No." assert yesAnswer or noAnswer observation = history done = ( True if interaction == game["lines"][-1] else False ) # if the interaction is the last interaction we are done reward = 0 if done and game["correct"] else -1 if yesAnswer: action = interaction[:-5] if noAnswer: action = interaction[:-4] history += interaction + "\n" dataset.append_observation_action_reward(observation, action, reward) dataset.append_terminal_observation( history, trajectory_info={"correct": game["correct"], "word": game["word"]}, ) dataset.check_consistency() return dataset class RSAGame(Task): def __init__( self, base_model: str, batch_size: int, n_traj_eval: int, word_list=None, **kwargs, ): super().__init__(batch_size, n_traj_eval, **kwargs) self.base_model = base_model self.word_list = word_list self.max_horizon = 20 def setup(self, stage: str): self.dataset = self.read_data() self.dataset.check_consistency() print( "\n *** Dataset Trimming Now Disabled. Please Called the Subroutine for triming" ) def read_data(self): import json from Dataset import TrajectoryDataset from rsa_game import get_game_outcome, randomly_convert_game_history_to_query with open( f"rsa/{self.base_model}_sampling_all_targets_results.json" ) as f: data = json.load(f) with open( "rsa/reasoning_dialogs.json" ) as f: for key, value in json.load(f).items(): instance = {} instance["history"] = value["dialog"] instance["target"] = value["target_referent"].split(" ") instance["min_turns"] = len(value["dialog"]) instance["max_turns"] = len(instance["target"]) * 2 instance["object_list"] = value["referent_set"] data.append(instance) dataset = TrajectoryDataset() for game in random.sample(data, 3200): is_valid = True for message in game["history"]: if message["content"] == "": is_valid = False break if not is_valid: continue outcome, history_length = get_game_outcome( game["history"], game["target"], game["min_turns"] ) if outcome == "game wins": reward = rsa_reward( len(game["target"]) * 2, game["min_turns"] * 2, history_length ) else: continue if reward == 0: continue for idx, interaction in enumerate(game["history"][:history_length]): query = randomly_convert_game_history_to_query( game["history"][:idx], target=game["target"], min_turns=game["min_turns"], object_list=game["object_list"], ) target = interaction["content"] done = ( True if idx >= history_length - 2 else False ) # if the interaction is the last interaction we are done reward = 0 if done else reward dataset.append_observation_action_reward(query, target, reward) history = randomly_convert_game_history_to_query( game["history"], target=game["target"], min_turns=game["min_turns"], object_list=game["object_list"], ) dataset.append_terminal_observation( history, trajectory_info={ "object_list": game["object_list"], "target": game["target"], }, ) print("The length of the dataset is: ", len(dataset)) dataset.check_consistency() return dataset class WordTaboo(Task): def __init__( self, base_model: str, batch_size: int, n_traj_eval: int, word_list=None, **kwargs, ): super().__init__(batch_size, n_traj_eval, **kwargs) self.base_model = base_model self.word_list = word_list self.max_horizon = 20 def setup(self, stage: str): self.dataset = self.read_data() self.dataset.check_consistency() print( "\n *** Dataset Trimming Now Disabled. Please Called the Subroutine for triming" ) def read_data(self): import json from Dataset import TrajectoryDataset from word_taboo import get_game_outcome, randomly_convert_game_history_to_query with open( f"wordtaboo/{self.base_model}_sampling_all_targets_results.json", "r" ) as f: data = json.load(f) with open( "wordtaboo/llm_game_top_test_results.json", "r" ) as f: data.extend(json.load(f)) dataset = TrajectoryDataset() for game in data: is_valid = True for message in game["history"]: if message["content"] == "": is_valid = False break if not is_valid: continue outcome, history_length = get_game_outcome( game["history"], game["target"], game["max_turns"] ) if outcome == "defender wins": winner = "defender" elif outcome == "attacker wins": if self.base_model == "Qwen3-14B": if random.random() < 0.85: # 0.85 for qwen3; 0.9 for llama3 continue else: if random.random() < 0.9: # 0.85 for qwen3; 0.9 for llama3 continue winner = "attacker" else: continue for idx, interaction in enumerate(game["history"][:history_length]): if interaction["role"] != winner: continue query = randomly_convert_game_history_to_query( game["history"][:idx], target=game["target"], max_turns=game["max_turns"], ) target = interaction["content"] done = ( True if idx >= history_length - 2 else False ) # if the interaction is the last interaction we are done reward = 0 if done else 1 dataset.append_observation_action_reward(query, target, reward) history = randomly_convert_game_history_to_query( game["history"], game["target"], game["max_turns"] ) dataset.append_terminal_observation( history, trajectory_info={"target": game["target"]} ) print("The length of the dataset is: ", len(dataset)) dataset.check_consistency() return dataset class StrategicDialogue(Task): def __init__( self, base_model: str, batch_size: int, n_traj_eval: int, word_list=None, **kwargs, ): super().__init__(batch_size, n_traj_eval, **kwargs) self.base_model = base_model self.word_list = word_list self.max_horizon = 20 def setup(self, stage: str): self.dataset = self.read_data() self.dataset.check_consistency() print( "\n *** Dataset Trimming Now Disabled. Please Called the Subroutine for triming" ) def read_data(self): import json from Dataset import TrajectoryDataset from word_taboo import get_game_outcome, randomly_convert_game_history_to_query with open( f"wordtaboo/{self.base_model}_sampling_all_targets_results.json", "r" ) as f: data = json.load(f) with open( "wordtaboo/llm_game_top_test_results.json", "r" ) as f: data.extend(json.load(f)) dataset = TrajectoryDataset() for game in data: is_valid = True for message in game["history"]: if message["content"] == "": is_valid = False break if not is_valid: continue outcome, history_length = get_game_outcome( game["history"], game["target"], game["max_turns"] ) if outcome == "defender wins": winner = "defender" elif outcome == "attacker wins": if self.base_model == "Qwen3-14B": if random.random() < 0.85: # 0.85 for qwen3; 0.9 for llama3 continue else: if random.random() < 0.9: # 0.85 for qwen3; 0.9 for llama3 continue winner = "attacker" else: continue for idx, interaction in enumerate(game["history"][:history_length]): if interaction["role"] != winner: continue query = randomly_convert_game_history_to_query( game["history"][:idx], target=game["target"], max_turns=game["max_turns"], ) target = interaction["content"] done = ( True if idx >= history_length - 2 else False ) # if the interaction is the last interaction we are done reward = 0 if done else 1 dataset.append_observation_action_reward(query, target, reward) history = randomly_convert_game_history_to_query( game["history"], game["target"], game["max_turns"] ) dataset.append_terminal_observation( history, trajectory_info={"target": game["target"]} ) from rsa_game import get_game_outcome, randomly_convert_game_history_to_query with open( f"rsa/{self.base_model}_sampling_all_targets_results.json" ) as f: data = json.load(f) with open( "rsa/reasoning_dialogs.json" ) as f: for key, value in json.load(f).items(): instance = {} instance["history"] = value["dialog"] instance["target"] = value["target_referent"].split(" ") instance["min_turns"] = len(value["dialog"]) instance["max_turns"] = len(instance["target"]) * 2 instance["object_list"] = value["referent_set"] data.append(instance) for game in random.sample(data, 3200): is_valid = True for message in game["history"]: if message["content"] == "": is_valid = False break if not is_valid: continue outcome, history_length = get_game_outcome( game["history"], game["target"], game["min_turns"] ) if outcome == "game wins": reward = rsa_reward( len(game["target"]) * 2, game["min_turns"] * 2, history_length ) else: continue for idx, interaction in enumerate(game["history"][:history_length]): query = randomly_convert_game_history_to_query( game["history"][:idx], target=game["target"], min_turns=game["min_turns"], object_list=game["object_list"], ) target = interaction["content"] done = ( True if idx >= history_length - 2 else False ) # if the interaction is the last interaction we are done reward = 0 if done else reward dataset.append_observation_action_reward(query, target, reward) history = randomly_convert_game_history_to_query( game["history"], target=game["target"], min_turns=game["min_turns"], object_list=game["object_list"], ) dataset.append_terminal_observation( history, trajectory_info={ "object_list": game["object_list"], "target": game["target"], }, ) print("The length of the dataset is: ", len(dataset)) dataset.check_consistency() return dataset