SkyTong commited on
Commit
9c153c8
·
verified ·
1 Parent(s): c577e00

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md CHANGED
@@ -1,5 +1,12 @@
1
  ---
2
  license: openrail
 
 
 
 
 
 
 
3
  configs:
4
  - config_name: default
5
  data_files:
@@ -23,4 +30,87 @@ dataset_info:
23
  num_examples: 50
24
  download_size: 38738419
25
  dataset_size: 39054025
 
 
 
 
26
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: openrail
3
+ tags:
4
+ - robotics
5
+ - trajectory-prediction
6
+ - manipulation
7
+ - computer-vision
8
+ - time-series
9
+ pretty_name: Codatta Robotic Manipulation Trajectory
10
  configs:
11
  - config_name: default
12
  data_files:
 
30
  num_examples: 50
31
  download_size: 38738419
32
  dataset_size: 39054025
33
+ language:
34
+ - en
35
+ size_categories:
36
+ - n<1K
37
  ---
38
+
39
+ # Codatta Robotic Manipulation Trajectory (Sample)
40
+
41
+ ## Dataset Summary
42
+
43
+ This dataset contains high-quality annotated trajectories of robotic gripper manipulations. It is designed to train models for fine-grained control, trajectory prediction, and object interaction tasks.
44
+
45
+ Produced by **Codatta**, this dataset focuses on third-person views of robotic arms performing pick-and-place or manipulation tasks. Each sample includes the raw video, a visualization of the trajectory, and a rigorous JSON annotation of keyframes and coordinate points.
46
+
47
+ **Note:** This is a sample dataset containing **50 annotated examples**.
48
+
49
+ ## Supported Tasks
50
+
51
+ * **Trajectory Prediction:** Predicting the path of a gripper based on visual context.
52
+ * **Keyframe Extraction:** Identifying critical moments in a manipulation task (e.g., contact, velocity change).
53
+ * **Robotic Control:** Imitation learning from human-demonstrated or teleoperated data.
54
+
55
+ ## Dataset Structure
56
+
57
+ ### Data Fields
58
+
59
+ * **`id`** (string): Unique identifier for the trajectory sequence.
60
+ * **`total_frames`** (int32): Total number of frames in the video sequence.
61
+ * **`video_path`** (string): Path to the source MP4 video file recording the manipulation action.
62
+ * **`trajectory_image`** (image): A JPEG preview showing the overlaid trajectory path or keyframe visualization.
63
+ * **`annotations`** (string): A JSON-formatted string containing the detailed coordinate data.
64
+ * *Structure:* Contains lists of keyframes, timestamp, and the 5-point coordinates for the gripper in each annotated frame.
65
+
66
+ ### Data Preview
67
+ *(Hugging Face's viewer will automatically render the `trajectory_image` here)*
68
+
69
+ ## Annotation Standards
70
+
71
+ The data was annotated following a strict protocol to ensure precision and consistency.
72
+
73
+ ### 1. Viewpoint Scope
74
+ * **Included:** Third-person views (fixed camera recording the robot).
75
+ * [cite_start]**Excluded:** First-person views (Eye-in-Hand) are explicitly excluded to ensure consistent coordinate mapping[cite: 5, 15].
76
+
77
+ ### 2. Keyframe Selection
78
+ Annotations are not dense (every frame) but sparse, focusing on **Keyframes** that define the motion logic. [cite_start]A Keyframe is defined by the following events [cite: 20-25]:
79
+ 1. [cite_start]**Start Frame:** The gripper first appears in the screen[cite: 21].
80
+ 2. [cite_start]**End Frame:** The gripper leaves the screen[cite: 22].
81
+ 3. [cite_start]**Velocity Change:** Frames where the speed direction suddenly changes (marking the minimum speed point)[cite: 23].
82
+ 4. [cite_start]**State Change:** Frames where the gripper opens or closes[cite: 24].
83
+ 5. [cite_start]**Contact:** The precise moment the gripper touches the object[cite: 25].
84
+
85
+ ### 3. The 5-Point Annotation Method
86
+ [cite_start]For every annotated keyframe, the gripper is labeled with **5 specific coordinate points** to capture its pose and state accurately[cite: 27]:
87
+
88
+ | Point ID | Description | Location Detail |
89
+ | :--- | :--- | :--- |
90
+ | **Point 1 & 2** | **Fingertips** | [cite_start]Center of the bottom edge of the gripper tips[cite: 28, 29]. |
91
+ | **Point 3 & 4** | **Gripper Ends** | [cite_start]The rearmost points of the closing area (indicating the finger direction)[cite: 31]. |
92
+ | **Point 5** | **Tiger's Mouth** | [cite_start]The center of the crossbeam (base of the gripper)[cite: 32]. |
93
+
94
+ ### 4. Quality Control
95
+ * [cite_start]**Accuracy:** All datasets passed a rigorous quality assurance process with a minimum **95% accuracy rate**[cite: 78].
96
+ * **Occlusion Handling:** If the gripper is partially occluded, points are estimated based on object geometry. [cite_start]Sequences where the gripper is fully occluded or only shows a side profile without clear features are discarded[cite: 58, 63].
97
+
98
+ ## Usage Example
99
+
100
+ ```python
101
+ from datasets import load_dataset
102
+ import json
103
+
104
+ # Load the dataset
105
+ ds = load_dataset("Codatta/robotic-manipulation-trajectory", split="train")
106
+
107
+ # Access a sample
108
+ sample = ds[0]
109
+
110
+ # View the image
111
+ print(f"Trajectory ID: {sample['id']}")
112
+ sample['trajectory_image'].show()
113
+
114
+ # Parse annotations
115
+ annotations = json.loads(sample['annotations'])
116
+ print(f"Keyframes count: {len(annotations)}")