File size: 3,564 Bytes
0550c2a 24cfc6c 09a8d1c 24cfc6c 09a8d1c 24cfc6c 0550c2a 24cfc6c 0550c2a 24cfc6c 0550c2a 09a8d1c 3ab9093 09a8d1c 0550c2a 24cfc6c 0550c2a 24cfc6c 0550c2a 24cfc6c 0550c2a 24cfc6c 0550c2a 24cfc6c 0550c2a 24cfc6c 0550c2a 24cfc6c 0550c2a 24cfc6c 0550c2a 24cfc6c 09a8d1c 24cfc6c 09a8d1c 24cfc6c 09a8d1c 0550c2a 24cfc6c 0550c2a 92f983e 09a8d1c 0550c2a 24cfc6c 0550c2a 24cfc6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
library_name: peft
license: apache-2.0
base_model: t5-base
tags:
- base_model:adapter:t5-base
- lora
- transformers
model-index:
- name: t5-base-controllable-qa-generator
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-controllable-qa-generator
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8687
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 7.2453 | 2.3855 | 50 | 3.5197 |
| 2.0995 | 4.7711 | 100 | 1.9805 |
| 1.8109 | 7.1446 | 150 | 1.7060 |
| 1.6062 | 9.5301 | 200 | 1.5023 |
| 1.3582 | 11.9157 | 250 | 1.3483 |
| 1.3196 | 14.2892 | 300 | 1.2469 |
| 1.2131 | 16.6747 | 350 | 1.1814 |
| 1.1552 | 19.0482 | 400 | 1.1317 |
| 1.122 | 21.4337 | 450 | 1.0944 |
| 1.046 | 23.8193 | 500 | 1.0690 |
| 1.051 | 26.1928 | 550 | 1.0470 |
| 1.0073 | 28.5783 | 600 | 1.0285 |
| 0.9617 | 30.9639 | 650 | 1.0111 |
| 0.9889 | 33.3373 | 700 | 0.9974 |
| 0.9275 | 35.7229 | 750 | 0.9843 |
| 0.923 | 38.0964 | 800 | 0.9723 |
| 0.9385 | 40.4819 | 850 | 0.9607 |
| 0.931 | 42.8675 | 900 | 0.9519 |
| 0.8915 | 45.2410 | 950 | 0.9439 |
| 0.939 | 47.6265 | 1000 | 0.9360 |
| 0.9003 | 50.0 | 1050 | 0.9281 |
| 0.875 | 52.3855 | 1100 | 0.9206 |
| 0.8751 | 54.7711 | 1150 | 0.9152 |
| 0.8616 | 57.1446 | 1200 | 0.9095 |
| 0.8805 | 59.5301 | 1250 | 0.9040 |
| 0.8509 | 61.9157 | 1300 | 0.8989 |
| 0.8196 | 64.2892 | 1350 | 0.8942 |
| 0.8495 | 66.6747 | 1400 | 0.8908 |
| 0.8655 | 69.0482 | 1450 | 0.8874 |
| 0.9224 | 71.4337 | 1500 | 0.8829 |
| 0.8371 | 73.8193 | 1550 | 0.8807 |
| 0.8107 | 76.1928 | 1600 | 0.8784 |
| 0.8333 | 78.5783 | 1650 | 0.8756 |
| 0.8475 | 80.9639 | 1700 | 0.8747 |
| 0.8075 | 83.3373 | 1750 | 0.8729 |
| 0.8352 | 85.7229 | 1800 | 0.8712 |
| 0.8516 | 88.0964 | 1850 | 0.8700 |
| 0.8115 | 90.4819 | 1900 | 0.8694 |
| 0.8477 | 92.8675 | 1950 | 0.8687 |
| 0.8289 | 95.2410 | 2000 | 0.8687 |
### Framework versions
- PEFT 0.16.0
- Transformers 4.53.3
- Pytorch 2.6.0+cu124
- Datasets 4.1.1
- Tokenizers 0.21.2 |