File size: 3,564 Bytes
0550c2a
24cfc6c
 
09a8d1c
24cfc6c
09a8d1c
24cfc6c
 
 
 
 
0550c2a
 
24cfc6c
 
0550c2a
24cfc6c
0550c2a
09a8d1c
3ab9093
09a8d1c
0550c2a
24cfc6c
0550c2a
24cfc6c
0550c2a
24cfc6c
0550c2a
24cfc6c
0550c2a
24cfc6c
0550c2a
24cfc6c
0550c2a
24cfc6c
0550c2a
24cfc6c
0550c2a
24cfc6c
09a8d1c
 
 
24cfc6c
 
09a8d1c
24cfc6c
 
09a8d1c
0550c2a
24cfc6c
0550c2a
92f983e
 
09a8d1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0550c2a
 
24cfc6c
0550c2a
24cfc6c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
library_name: peft
license: apache-2.0
base_model: t5-base
tags:
- base_model:adapter:t5-base
- lora
- transformers
model-index:
- name: t5-base-controllable-qa-generator
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-base-controllable-qa-generator

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8687

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 2000

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 7.2453        | 2.3855  | 50   | 3.5197          |
| 2.0995        | 4.7711  | 100  | 1.9805          |
| 1.8109        | 7.1446  | 150  | 1.7060          |
| 1.6062        | 9.5301  | 200  | 1.5023          |
| 1.3582        | 11.9157 | 250  | 1.3483          |
| 1.3196        | 14.2892 | 300  | 1.2469          |
| 1.2131        | 16.6747 | 350  | 1.1814          |
| 1.1552        | 19.0482 | 400  | 1.1317          |
| 1.122         | 21.4337 | 450  | 1.0944          |
| 1.046         | 23.8193 | 500  | 1.0690          |
| 1.051         | 26.1928 | 550  | 1.0470          |
| 1.0073        | 28.5783 | 600  | 1.0285          |
| 0.9617        | 30.9639 | 650  | 1.0111          |
| 0.9889        | 33.3373 | 700  | 0.9974          |
| 0.9275        | 35.7229 | 750  | 0.9843          |
| 0.923         | 38.0964 | 800  | 0.9723          |
| 0.9385        | 40.4819 | 850  | 0.9607          |
| 0.931         | 42.8675 | 900  | 0.9519          |
| 0.8915        | 45.2410 | 950  | 0.9439          |
| 0.939         | 47.6265 | 1000 | 0.9360          |
| 0.9003        | 50.0    | 1050 | 0.9281          |
| 0.875         | 52.3855 | 1100 | 0.9206          |
| 0.8751        | 54.7711 | 1150 | 0.9152          |
| 0.8616        | 57.1446 | 1200 | 0.9095          |
| 0.8805        | 59.5301 | 1250 | 0.9040          |
| 0.8509        | 61.9157 | 1300 | 0.8989          |
| 0.8196        | 64.2892 | 1350 | 0.8942          |
| 0.8495        | 66.6747 | 1400 | 0.8908          |
| 0.8655        | 69.0482 | 1450 | 0.8874          |
| 0.9224        | 71.4337 | 1500 | 0.8829          |
| 0.8371        | 73.8193 | 1550 | 0.8807          |
| 0.8107        | 76.1928 | 1600 | 0.8784          |
| 0.8333        | 78.5783 | 1650 | 0.8756          |
| 0.8475        | 80.9639 | 1700 | 0.8747          |
| 0.8075        | 83.3373 | 1750 | 0.8729          |
| 0.8352        | 85.7229 | 1800 | 0.8712          |
| 0.8516        | 88.0964 | 1850 | 0.8700          |
| 0.8115        | 90.4819 | 1900 | 0.8694          |
| 0.8477        | 92.8675 | 1950 | 0.8687          |
| 0.8289        | 95.2410 | 2000 | 0.8687          |


### Framework versions

- PEFT 0.16.0
- Transformers 4.53.3
- Pytorch 2.6.0+cu124
- Datasets 4.1.1
- Tokenizers 0.21.2