Update modeling_gpt2.py
Browse filesupdating based on transformers==4.52.4
- modeling_gpt2.py +573 -743
modeling_gpt2.py
CHANGED
|
@@ -19,19 +19,18 @@ import math
|
|
| 19 |
import os
|
| 20 |
import warnings
|
| 21 |
from dataclasses import dataclass
|
| 22 |
-
from typing import Optional, Tuple, Union
|
| 23 |
|
| 24 |
import torch
|
| 25 |
-
import torch.utils.checkpoint
|
| 26 |
-
from packaging import version
|
| 27 |
from torch import nn
|
| 28 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 29 |
|
| 30 |
-
from transformers.activations import ACT2FN
|
|
|
|
| 31 |
from transformers.generation import GenerationMixin
|
| 32 |
from transformers.modeling_attn_mask_utils import (
|
|
|
|
| 33 |
_prepare_4d_attention_mask_for_sdpa,
|
| 34 |
-
_prepare_4d_causal_attention_mask_for_sdpa,
|
| 35 |
)
|
| 36 |
from transformers.modeling_outputs import (
|
| 37 |
BaseModelOutputWithPastAndCrossAttentions,
|
|
@@ -40,7 +39,7 @@ from transformers.modeling_outputs import (
|
|
| 40 |
SequenceClassifierOutputWithPast,
|
| 41 |
TokenClassifierOutput,
|
| 42 |
)
|
| 43 |
-
from transformers.modeling_utils import
|
| 44 |
from transformers.pytorch_utils import (
|
| 45 |
Conv1D,
|
| 46 |
find_pruneable_heads_and_indices,
|
|
@@ -48,86 +47,21 @@ from transformers.pytorch_utils import (
|
|
| 48 |
)
|
| 49 |
from transformers.utils import (
|
| 50 |
ModelOutput,
|
| 51 |
-
add_code_sample_docstrings,
|
| 52 |
add_start_docstrings,
|
| 53 |
-
|
| 54 |
-
get_torch_version,
|
| 55 |
-
is_flash_attn_2_available,
|
| 56 |
-
is_flash_attn_greater_or_equal_2_10,
|
| 57 |
logging,
|
| 58 |
-
replace_return_docstrings,
|
| 59 |
)
|
|
|
|
| 60 |
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 61 |
from .configuration_gpt2 import GPT2Config
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
|
| 67 |
|
| 68 |
logger = logging.get_logger(__name__)
|
| 69 |
|
| 70 |
-
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
|
| 71 |
-
_CONFIG_FOR_DOC = "GPT2Config"
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
| 75 |
-
"""Load tf checkpoints in a pytorch model"""
|
| 76 |
-
try:
|
| 77 |
-
import re
|
| 78 |
-
|
| 79 |
-
import tensorflow as tf
|
| 80 |
-
except ImportError:
|
| 81 |
-
logger.error(
|
| 82 |
-
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
| 83 |
-
"https://www.tensorflow.org/install/ for installation instructions."
|
| 84 |
-
)
|
| 85 |
-
raise
|
| 86 |
-
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
| 87 |
-
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
| 88 |
-
# Load weights from TF model
|
| 89 |
-
init_vars = tf.train.list_variables(tf_path)
|
| 90 |
-
names = []
|
| 91 |
-
arrays = []
|
| 92 |
-
for name, shape in init_vars:
|
| 93 |
-
logger.info(f"Loading TF weight {name} with shape {shape}")
|
| 94 |
-
array = tf.train.load_variable(tf_path, name)
|
| 95 |
-
names.append(name)
|
| 96 |
-
arrays.append(array.squeeze())
|
| 97 |
-
|
| 98 |
-
for name, array in zip(names, arrays):
|
| 99 |
-
name = name[6:] # skip "model/"
|
| 100 |
-
name = name.split("/")
|
| 101 |
-
pointer = model
|
| 102 |
-
for m_name in name:
|
| 103 |
-
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
| 104 |
-
scope_names = re.split(r"(\d+)", m_name)
|
| 105 |
-
else:
|
| 106 |
-
scope_names = [m_name]
|
| 107 |
-
if scope_names[0] == "w" or scope_names[0] == "g":
|
| 108 |
-
pointer = getattr(pointer, "weight")
|
| 109 |
-
elif scope_names[0] == "b":
|
| 110 |
-
pointer = getattr(pointer, "bias")
|
| 111 |
-
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
|
| 112 |
-
pointer = getattr(pointer, scope_names[0])
|
| 113 |
-
pointer = getattr(pointer, "weight")
|
| 114 |
-
else:
|
| 115 |
-
pointer = getattr(pointer, scope_names[0])
|
| 116 |
-
if len(scope_names) >= 2:
|
| 117 |
-
num = int(scope_names[1])
|
| 118 |
-
pointer = pointer[num]
|
| 119 |
-
try:
|
| 120 |
-
if pointer.shape != array.shape:
|
| 121 |
-
raise ValueError(
|
| 122 |
-
f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
| 123 |
-
)
|
| 124 |
-
except ValueError as e:
|
| 125 |
-
e.args += (pointer.shape, array.shape)
|
| 126 |
-
raise
|
| 127 |
-
logger.info(f"Initialize PyTorch weight {name}")
|
| 128 |
-
pointer.data = torch.from_numpy(array)
|
| 129 |
-
return model
|
| 130 |
-
|
| 131 |
|
| 132 |
class GPT2Attention(nn.Module):
|
| 133 |
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
|
@@ -195,55 +129,6 @@ class GPT2Attention(nn.Module):
|
|
| 195 |
self.num_heads = self.num_heads - len(heads)
|
| 196 |
self.pruned_heads = self.pruned_heads.union(heads)
|
| 197 |
|
| 198 |
-
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
| 199 |
-
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
| 200 |
-
|
| 201 |
-
if self.scale_attn_weights:
|
| 202 |
-
attn_weights = attn_weights / torch.full(
|
| 203 |
-
[],
|
| 204 |
-
value.size(-1) ** 0.5,
|
| 205 |
-
dtype=attn_weights.dtype,
|
| 206 |
-
device=attn_weights.device,
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
# Layer-wise attention scaling
|
| 210 |
-
if self.scale_attn_by_inverse_layer_idx:
|
| 211 |
-
attn_weights = attn_weights / float(self.layer_idx + 1)
|
| 212 |
-
|
| 213 |
-
if not self.is_cross_attention:
|
| 214 |
-
# if only "normal" attention layer implements causal mask
|
| 215 |
-
query_length, key_length = query.size(-2), key.size(-2)
|
| 216 |
-
causal_mask = self.bias[
|
| 217 |
-
:, :, key_length - query_length : key_length, :key_length
|
| 218 |
-
]
|
| 219 |
-
mask_value = torch.finfo(attn_weights.dtype).min
|
| 220 |
-
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 221 |
-
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 222 |
-
mask_value = torch.full(
|
| 223 |
-
[], mask_value, dtype=attn_weights.dtype, device=attn_weights.device
|
| 224 |
-
)
|
| 225 |
-
attn_weights = torch.where(
|
| 226 |
-
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
|
| 227 |
-
)
|
| 228 |
-
|
| 229 |
-
if attention_mask is not None:
|
| 230 |
-
# Apply the attention mask
|
| 231 |
-
attn_weights = attn_weights + attention_mask
|
| 232 |
-
|
| 233 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 234 |
-
|
| 235 |
-
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
| 236 |
-
attn_weights = attn_weights.type(value.dtype)
|
| 237 |
-
attn_weights = self.attn_dropout(attn_weights)
|
| 238 |
-
|
| 239 |
-
# Mask heads if we want to
|
| 240 |
-
if head_mask is not None:
|
| 241 |
-
attn_weights = attn_weights * head_mask
|
| 242 |
-
|
| 243 |
-
attn_output = torch.matmul(attn_weights, value)
|
| 244 |
-
|
| 245 |
-
return attn_output, attn_weights
|
| 246 |
-
|
| 247 |
def _upcast_and_reordered_attn(
|
| 248 |
self, query, key, value, attention_mask=None, head_mask=None
|
| 249 |
):
|
|
@@ -287,8 +172,8 @@ class GPT2Attention(nn.Module):
|
|
| 287 |
mask_value = torch.finfo(attn_weights.dtype).min
|
| 288 |
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 289 |
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 290 |
-
mask_value = torch.tensor(
|
| 291 |
-
attn_weights.device
|
| 292 |
)
|
| 293 |
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
| 294 |
|
|
@@ -311,321 +196,111 @@ class GPT2Attention(nn.Module):
|
|
| 311 |
attn_weights = attn_weights * head_mask
|
| 312 |
|
| 313 |
attn_output = torch.matmul(attn_weights, value)
|
|
|
|
| 314 |
|
| 315 |
return attn_output, attn_weights
|
| 316 |
|
| 317 |
-
|
| 318 |
-
""
|
| 319 |
-
|
| 320 |
-
""
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
| 324 |
-
|
| 325 |
-
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
| 326 |
-
"""
|
| 327 |
-
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
| 328 |
-
"""
|
| 329 |
-
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
| 330 |
-
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
| 331 |
-
return tensor.view(new_shape)
|
| 332 |
-
|
| 333 |
def forward(
|
| 334 |
self,
|
| 335 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 336 |
-
|
|
|
|
| 337 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 338 |
head_mask: Optional[torch.FloatTensor] = None,
|
| 339 |
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 340 |
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 341 |
-
use_cache: Optional[bool] = False,
|
| 342 |
output_attentions: Optional[bool] = False,
|
|
|
|
| 343 |
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
| 344 |
-
|
|
|
|
| 345 |
if not hasattr(self, "q_attn"):
|
| 346 |
raise ValueError(
|
| 347 |
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
| 348 |
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
| 349 |
)
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
| 353 |
self.split_size, dim=2
|
| 354 |
)
|
| 355 |
attention_mask = encoder_attention_mask
|
| 356 |
else:
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
query = self._split_heads(query, self.num_heads, self.head_dim)
|
| 360 |
-
key = self._split_heads(key, self.num_heads, self.head_dim)
|
| 361 |
-
value = self._split_heads(value, self.num_heads, self.head_dim)
|
| 362 |
-
|
| 363 |
-
if layer_past is not None:
|
| 364 |
-
past_key, past_value = layer_past
|
| 365 |
-
key = torch.cat((past_key, key), dim=-2)
|
| 366 |
-
value = torch.cat((past_value, value), dim=-2)
|
| 367 |
-
|
| 368 |
-
if use_cache is True:
|
| 369 |
-
present = (key, value)
|
| 370 |
-
else:
|
| 371 |
-
present = None
|
| 372 |
-
|
| 373 |
-
if self.reorder_and_upcast_attn:
|
| 374 |
-
attn_output, attn_weights = self._upcast_and_reordered_attn(
|
| 375 |
-
query, key, value, attention_mask, head_mask
|
| 376 |
-
)
|
| 377 |
-
else:
|
| 378 |
-
attn_output, attn_weights = self._attn(
|
| 379 |
-
query, key, value, attention_mask, head_mask
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
-
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
| 383 |
-
attn_output = self.c_proj(attn_output)
|
| 384 |
-
attn_output = self.resid_dropout(attn_output)
|
| 385 |
-
|
| 386 |
-
outputs = (attn_output, present)
|
| 387 |
-
if output_attentions:
|
| 388 |
-
outputs += (attn_weights,)
|
| 389 |
-
|
| 390 |
-
return outputs # a, present, (attentions)
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
class GPT2FlashAttention2(GPT2Attention):
|
| 394 |
-
"""
|
| 395 |
-
GPT2 flash attention module. This module inherits from `GPT2Attention` as the weights of the module stays
|
| 396 |
-
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 397 |
-
flash attention and deal with padding tokens in case the input contains any of them.
|
| 398 |
-
"""
|
| 399 |
-
|
| 400 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 401 |
-
def __init__(self, *args, **kwargs):
|
| 402 |
-
super().__init__(*args, **kwargs)
|
| 403 |
-
|
| 404 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 405 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 406 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 407 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 408 |
-
|
| 409 |
-
def forward(
|
| 410 |
-
self,
|
| 411 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 412 |
-
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 413 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
| 414 |
-
head_mask: Optional[torch.FloatTensor] = None,
|
| 415 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 416 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 417 |
-
use_cache: Optional[bool] = False,
|
| 418 |
-
output_attentions: Optional[bool] = False,
|
| 419 |
-
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
| 420 |
-
bsz, _, _ = hidden_states.size()
|
| 421 |
-
if encoder_hidden_states is not None:
|
| 422 |
-
if not hasattr(self, "q_attn"):
|
| 423 |
-
raise ValueError(
|
| 424 |
-
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
| 425 |
-
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
| 426 |
-
)
|
| 427 |
-
|
| 428 |
-
query = self.q_attn(hidden_states)
|
| 429 |
-
key, value = self.c_attn(encoder_hidden_states).split(
|
| 430 |
self.split_size, dim=2
|
| 431 |
)
|
| 432 |
-
attention_mask = encoder_attention_mask
|
| 433 |
-
else:
|
| 434 |
-
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
| 435 |
-
|
| 436 |
-
query = self._split_heads(query, self.num_heads, self.head_dim)
|
| 437 |
-
key = self._split_heads(key, self.num_heads, self.head_dim)
|
| 438 |
-
value = self._split_heads(value, self.num_heads, self.head_dim)
|
| 439 |
-
|
| 440 |
-
if layer_past is not None:
|
| 441 |
-
past_key = layer_past[0]
|
| 442 |
-
past_value = layer_past[1]
|
| 443 |
-
key = torch.cat((past_key, key), dim=-2)
|
| 444 |
-
value = torch.cat((past_value, value), dim=-2)
|
| 445 |
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
present = (key, value)
|
| 449 |
|
| 450 |
-
|
| 451 |
-
|
|
|
|
| 452 |
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 464 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 465 |
-
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 466 |
-
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 467 |
-
# in fp32. (LlamaRMSNorm handles it correctly)
|
| 468 |
-
|
| 469 |
-
if query.dtype == torch.float32:
|
| 470 |
-
if torch.is_autocast_enabled():
|
| 471 |
-
target_dtype = torch.get_autocast_gpu_dtype()
|
| 472 |
-
# Handle the case where the model is quantized
|
| 473 |
-
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 474 |
-
target_dtype = self.config._pre_quantization_dtype
|
| 475 |
-
else:
|
| 476 |
-
target_dtype = self.c_proj.weight.dtype
|
| 477 |
-
|
| 478 |
-
logger.warning_once(
|
| 479 |
-
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 480 |
-
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 481 |
-
f" {target_dtype}."
|
| 482 |
)
|
| 483 |
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
attn_output = _flash_attention_forward(
|
| 489 |
-
query,
|
| 490 |
-
key,
|
| 491 |
-
value,
|
| 492 |
-
attention_mask,
|
| 493 |
-
query_length,
|
| 494 |
-
dropout=attn_dropout,
|
| 495 |
-
is_causal=self.is_causal,
|
| 496 |
-
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 497 |
-
)
|
| 498 |
-
|
| 499 |
-
attn_weights_reshaped = attn_output.reshape(
|
| 500 |
-
bsz, query_length, self.num_heads * self.head_dim
|
| 501 |
)
|
| 502 |
-
attn_output = self.c_proj(attn_weights_reshaped)
|
| 503 |
-
attn_output = self.resid_dropout(attn_output)
|
| 504 |
-
|
| 505 |
-
outputs = (attn_output, present)
|
| 506 |
-
if output_attentions:
|
| 507 |
-
outputs += (attn_weights_reshaped,)
|
| 508 |
-
|
| 509 |
-
return outputs
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
class GPT2SdpaAttention(GPT2Attention):
|
| 513 |
-
"""
|
| 514 |
-
GPT2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 515 |
-
`GPT2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
|
| 516 |
-
to adapt to the SDPA API.
|
| 517 |
-
"""
|
| 518 |
-
|
| 519 |
-
def __init__(self, *args, **kwargs):
|
| 520 |
-
super().__init__(*args, **kwargs)
|
| 521 |
-
|
| 522 |
-
# Idea adapted from transformers.models.bert.modeling_bert.BertSdpaSelfAttention.__init__
|
| 523 |
-
# SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
|
| 524 |
-
# attn_mask, so we need to call `.contiguous()`. This was fixed in torch==2.2.0.
|
| 525 |
-
# Reference: https://github.com/pytorch/pytorch/issues/112577
|
| 526 |
-
self.require_contiguous_qkv = version.parse(
|
| 527 |
-
get_torch_version()
|
| 528 |
-
) < version.parse("2.2.0")
|
| 529 |
-
|
| 530 |
-
def forward(
|
| 531 |
-
self,
|
| 532 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 533 |
-
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 534 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
| 535 |
-
head_mask: Optional[torch.FloatTensor] = None,
|
| 536 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 537 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 538 |
-
use_cache: Optional[bool] = False,
|
| 539 |
-
output_attentions: Optional[bool] = False,
|
| 540 |
-
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
| 541 |
-
if output_attentions or head_mask is not None:
|
| 542 |
-
logger.warning_once(
|
| 543 |
-
"`GPT2SdpaAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not support "
|
| 544 |
-
"`output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, but "
|
| 545 |
-
"specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
|
| 546 |
-
'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 547 |
-
)
|
| 548 |
-
return super().forward(
|
| 549 |
-
hidden_states=hidden_states,
|
| 550 |
-
layer_past=layer_past,
|
| 551 |
-
attention_mask=attention_mask,
|
| 552 |
-
head_mask=head_mask,
|
| 553 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 554 |
-
encoder_attention_mask=encoder_attention_mask,
|
| 555 |
-
use_cache=use_cache,
|
| 556 |
-
output_attentions=output_attentions,
|
| 557 |
-
)
|
| 558 |
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
"
|
|
|
|
| 568 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 569 |
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
)
|
| 574 |
-
attention_mask = encoder_attention_mask
|
| 575 |
else:
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
value = torch.cat((past_value, value), dim=-2)
|
| 588 |
-
|
| 589 |
-
present = None
|
| 590 |
-
if use_cache is True:
|
| 591 |
-
present = (key, value)
|
| 592 |
-
|
| 593 |
-
# Avoid torch==2.1.2 specific bug for the memory-efficient backend in SDPA
|
| 594 |
-
if (
|
| 595 |
-
self.require_contiguous_qkv
|
| 596 |
-
and query.device.type == "cuda"
|
| 597 |
-
and attention_mask is not None
|
| 598 |
-
):
|
| 599 |
-
query = query.contiguous()
|
| 600 |
-
key = key.contiguous()
|
| 601 |
-
value = value.contiguous()
|
| 602 |
-
|
| 603 |
-
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 604 |
-
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 605 |
-
is_causal = (
|
| 606 |
-
True
|
| 607 |
-
if attention_mask is None and q_len > 1 and not is_cross_attention
|
| 608 |
-
else False
|
| 609 |
-
)
|
| 610 |
-
|
| 611 |
-
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 612 |
-
query,
|
| 613 |
-
key,
|
| 614 |
-
value,
|
| 615 |
-
attn_mask=attention_mask,
|
| 616 |
-
dropout_p=self.attn_dropout.p if self.training else 0.0,
|
| 617 |
-
is_causal=is_causal,
|
| 618 |
-
)
|
| 619 |
-
|
| 620 |
-
# Reshape outputs
|
| 621 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 622 |
-
attn_output = attn_output.view(bsz, q_len, self.embed_dim)
|
| 623 |
|
| 624 |
-
|
| 625 |
attn_output = self.c_proj(attn_output)
|
| 626 |
attn_output = self.resid_dropout(attn_output)
|
| 627 |
|
| 628 |
-
return attn_output,
|
| 629 |
|
| 630 |
|
| 631 |
class GPT2MLP(nn.Module):
|
|
@@ -647,26 +322,18 @@ class GPT2MLP(nn.Module):
|
|
| 647 |
return hidden_states
|
| 648 |
|
| 649 |
|
| 650 |
-
GPT2_ATTENTION_CLASSES = {
|
| 651 |
-
"eager": GPT2Attention,
|
| 652 |
-
"flash_attention_2": GPT2FlashAttention2,
|
| 653 |
-
"sdpa": GPT2SdpaAttention,
|
| 654 |
-
}
|
| 655 |
-
|
| 656 |
-
|
| 657 |
class GPT2Block(nn.Module):
|
| 658 |
def __init__(self, config, layer_idx=None):
|
| 659 |
super().__init__()
|
| 660 |
hidden_size = config.hidden_size
|
| 661 |
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
| 662 |
-
attention_class = GPT2_ATTENTION_CLASSES[config._attn_implementation]
|
| 663 |
|
| 664 |
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 665 |
-
self.attn =
|
| 666 |
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 667 |
|
| 668 |
if config.add_cross_attention:
|
| 669 |
-
self.crossattention =
|
| 670 |
config=config, is_cross_attention=True, layer_idx=layer_idx
|
| 671 |
)
|
| 672 |
self.ln_cross_attn = nn.LayerNorm(
|
|
@@ -675,32 +342,40 @@ class GPT2Block(nn.Module):
|
|
| 675 |
|
| 676 |
self.mlp = GPT2MLP(inner_dim, config)
|
| 677 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 678 |
def forward(
|
| 679 |
self,
|
| 680 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 681 |
-
|
|
|
|
| 682 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 683 |
head_mask: Optional[torch.FloatTensor] = None,
|
| 684 |
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 685 |
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 686 |
use_cache: Optional[bool] = False,
|
| 687 |
output_attentions: Optional[bool] = False,
|
|
|
|
| 688 |
) -> Union[
|
| 689 |
Tuple[torch.Tensor],
|
| 690 |
Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]],
|
| 691 |
]:
|
| 692 |
residual = hidden_states
|
| 693 |
hidden_states = self.ln_1(hidden_states)
|
| 694 |
-
|
| 695 |
hidden_states,
|
| 696 |
-
|
|
|
|
| 697 |
attention_mask=attention_mask,
|
| 698 |
head_mask=head_mask,
|
| 699 |
use_cache=use_cache,
|
| 700 |
output_attentions=output_attentions,
|
|
|
|
| 701 |
)
|
| 702 |
-
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
| 703 |
-
outputs = attn_outputs[1:]
|
| 704 |
# residual connection
|
| 705 |
hidden_states = attn_output + residual
|
| 706 |
|
|
@@ -713,20 +388,17 @@ class GPT2Block(nn.Module):
|
|
| 713 |
)
|
| 714 |
residual = hidden_states
|
| 715 |
hidden_states = self.ln_cross_attn(hidden_states)
|
| 716 |
-
|
| 717 |
hidden_states,
|
|
|
|
| 718 |
attention_mask=attention_mask,
|
| 719 |
head_mask=head_mask,
|
| 720 |
encoder_hidden_states=encoder_hidden_states,
|
| 721 |
encoder_attention_mask=encoder_attention_mask,
|
| 722 |
output_attentions=output_attentions,
|
| 723 |
)
|
| 724 |
-
attn_output = cross_attn_outputs[0]
|
| 725 |
# residual connection
|
| 726 |
-
hidden_states = residual +
|
| 727 |
-
outputs = (
|
| 728 |
-
outputs + cross_attn_outputs[2:]
|
| 729 |
-
) # add cross attentions if we output attention weights
|
| 730 |
|
| 731 |
residual = hidden_states
|
| 732 |
hidden_states = self.ln_2(hidden_states)
|
|
@@ -734,20 +406,132 @@ class GPT2Block(nn.Module):
|
|
| 734 |
# residual connection
|
| 735 |
hidden_states = residual + feed_forward_hidden_states
|
| 736 |
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
|
|
|
| 741 |
|
| 742 |
-
return outputs
|
| 743 |
|
| 744 |
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 749 |
"""
|
| 750 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 751 |
config_class = GPT2Config
|
| 752 |
load_tf_weights = load_tf_weights_in_gpt2
|
| 753 |
base_model_prefix = "transformer"
|
|
@@ -757,6 +541,9 @@ class GPT2PreTrainedModel(PreTrainedModel):
|
|
| 757 |
_skip_keys_device_placement = "past_key_values"
|
| 758 |
_supports_flash_attn_2 = True
|
| 759 |
_supports_sdpa = True
|
|
|
|
|
|
|
|
|
|
| 760 |
|
| 761 |
def __init__(self, *inputs, **kwargs):
|
| 762 |
super().__init__(*inputs, **kwargs)
|
|
@@ -830,96 +617,13 @@ class GPT2DoubleHeadsModelOutput(ModelOutput):
|
|
| 830 |
|
| 831 |
loss: Optional[torch.FloatTensor] = None
|
| 832 |
mc_loss: Optional[torch.FloatTensor] = None
|
| 833 |
-
logits: torch.FloatTensor = None
|
| 834 |
-
mc_logits: torch.FloatTensor = None
|
| 835 |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 836 |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 837 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 838 |
|
| 839 |
|
| 840 |
-
GPT2_START_DOCSTRING = r"""
|
| 841 |
-
|
| 842 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 843 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 844 |
-
etc.)
|
| 845 |
-
|
| 846 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 847 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 848 |
-
and behavior.
|
| 849 |
-
|
| 850 |
-
Parameters:
|
| 851 |
-
config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
|
| 852 |
-
Initializing with a config file does not load the weights associated with the model, only the
|
| 853 |
-
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 854 |
-
"""
|
| 855 |
-
|
| 856 |
-
GPT2_INPUTS_DOCSTRING = r"""
|
| 857 |
-
Args:
|
| 858 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 859 |
-
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 860 |
-
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
| 861 |
-
sequence tokens in the vocabulary.
|
| 862 |
-
|
| 863 |
-
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 864 |
-
`input_ids`.
|
| 865 |
-
|
| 866 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 867 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
| 868 |
-
|
| 869 |
-
[What are input IDs?](../glossary#input-ids)
|
| 870 |
-
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
| 871 |
-
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
| 872 |
-
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
| 873 |
-
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
| 874 |
-
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 875 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 876 |
-
|
| 877 |
-
- 1 for tokens that are **not masked**,
|
| 878 |
-
- 0 for tokens that are **masked**.
|
| 879 |
-
|
| 880 |
-
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
| 881 |
-
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
| 882 |
-
`len(past_key_values) + len(input_ids)`
|
| 883 |
-
|
| 884 |
-
[What are attention masks?](../glossary#attention-mask)
|
| 885 |
-
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
| 886 |
-
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 887 |
-
1]`:
|
| 888 |
-
|
| 889 |
-
- 0 corresponds to a *sentence A* token,
|
| 890 |
-
- 1 corresponds to a *sentence B* token.
|
| 891 |
-
|
| 892 |
-
[What are token type IDs?](../glossary#token-type-ids)
|
| 893 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 894 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 895 |
-
config.max_position_embeddings - 1]`.
|
| 896 |
-
|
| 897 |
-
[What are position IDs?](../glossary#position-ids)
|
| 898 |
-
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 899 |
-
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 900 |
-
|
| 901 |
-
- 1 indicates the head is **not masked**,
|
| 902 |
-
- 0 indicates the head is **masked**.
|
| 903 |
-
|
| 904 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 905 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 906 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 907 |
-
model's internal embedding lookup matrix.
|
| 908 |
-
|
| 909 |
-
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
| 910 |
-
`past_key_values`).
|
| 911 |
-
use_cache (`bool`, *optional*):
|
| 912 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 913 |
-
`past_key_values`).
|
| 914 |
-
output_attentions (`bool`, *optional*):
|
| 915 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 916 |
-
tensors for more detail.
|
| 917 |
-
output_hidden_states (`bool`, *optional*):
|
| 918 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 919 |
-
more detail.
|
| 920 |
-
return_dict (`bool`, *optional*):
|
| 921 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 922 |
-
"""
|
| 923 |
PARALLELIZE_DOCSTRING = r"""
|
| 924 |
This is an experimental feature and is a subject to change at a moment's notice.
|
| 925 |
|
|
@@ -972,10 +676,7 @@ DEPARALLELIZE_DOCSTRING = r"""
|
|
| 972 |
"""
|
| 973 |
|
| 974 |
|
| 975 |
-
@
|
| 976 |
-
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
| 977 |
-
GPT2_START_DOCSTRING,
|
| 978 |
-
)
|
| 979 |
class GPT2Model(GPT2PreTrainedModel):
|
| 980 |
_supports_param_buffer_assignment = False
|
| 981 |
|
|
@@ -1065,16 +766,12 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 1065 |
for layer, heads in heads_to_prune.items():
|
| 1066 |
self.h[layer].attn.prune_heads(heads)
|
| 1067 |
|
| 1068 |
-
@
|
| 1069 |
-
@add_code_sample_docstrings(
|
| 1070 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1071 |
-
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
| 1072 |
-
config_class=_CONFIG_FOR_DOC,
|
| 1073 |
-
)
|
| 1074 |
def forward(
|
| 1075 |
self,
|
| 1076 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1077 |
-
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
| 1078 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1079 |
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1080 |
position_ids: Optional[torch.LongTensor] = None,
|
|
@@ -1086,7 +783,22 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 1086 |
output_attentions: Optional[bool] = None,
|
| 1087 |
output_hidden_states: Optional[bool] = None,
|
| 1088 |
return_dict: Optional[bool] = None,
|
|
|
|
| 1089 |
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1090 |
output_attentions = (
|
| 1091 |
output_attentions
|
| 1092 |
if output_attentions is not None
|
|
@@ -1122,68 +834,70 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 1122 |
if token_type_ids is not None:
|
| 1123 |
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 1124 |
|
| 1125 |
-
if
|
| 1126 |
-
|
| 1127 |
-
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
|
| 1131 |
-
|
| 1132 |
-
|
| 1133 |
-
|
| 1134 |
-
|
| 1135 |
-
|
| 1136 |
-
|
| 1137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1138 |
|
| 1139 |
if inputs_embeds is None:
|
| 1140 |
inputs_embeds = self.wte(input_ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1141 |
position_embeds = self.wpe(position_ids)
|
| 1142 |
-
hidden_states = inputs_embeds + position_embeds
|
| 1143 |
|
| 1144 |
# Attention mask.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1145 |
_use_sdpa = (
|
| 1146 |
self._attn_implementation == "sdpa"
|
| 1147 |
and output_attentions is False
|
| 1148 |
and head_mask is None
|
| 1149 |
)
|
| 1150 |
-
attention_mask = (
|
| 1151 |
-
attention_mask.view(batch_size, -1) if attention_mask is not None else None
|
| 1152 |
-
)
|
| 1153 |
-
if self._attn_implementation == "flash_attention_2":
|
| 1154 |
-
attention_mask = (
|
| 1155 |
-
attention_mask
|
| 1156 |
-
if (attention_mask is not None and 0 in attention_mask)
|
| 1157 |
-
else None
|
| 1158 |
-
)
|
| 1159 |
-
elif _use_sdpa:
|
| 1160 |
-
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
| 1161 |
-
attention_mask=attention_mask,
|
| 1162 |
-
input_shape=(batch_size, input_shape[-1]),
|
| 1163 |
-
inputs_embeds=inputs_embeds,
|
| 1164 |
-
past_key_values_length=past_length,
|
| 1165 |
-
)
|
| 1166 |
-
else:
|
| 1167 |
-
if attention_mask is not None:
|
| 1168 |
-
# We create a 3D attention mask from a 2D tensor mask.
|
| 1169 |
-
# Sizes are [batch_size, 1, 1, to_seq_length]
|
| 1170 |
-
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
| 1171 |
-
# this attention mask is more simple than the triangular masking of causal attention
|
| 1172 |
-
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
| 1173 |
-
attention_mask = attention_mask[:, None, None, :]
|
| 1174 |
-
|
| 1175 |
-
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 1176 |
-
# masked positions, this operation will create a tensor which is 0.0 for
|
| 1177 |
-
# positions we want to attend and the dtype's smallest value for masked positions.
|
| 1178 |
-
# Since we are adding it to the raw scores before the softmax, this is
|
| 1179 |
-
# effectively the same as removing these entirely.
|
| 1180 |
-
attention_mask = attention_mask.to(
|
| 1181 |
-
dtype=self.dtype
|
| 1182 |
-
) # fp16 compatibility
|
| 1183 |
-
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
| 1184 |
-
|
| 1185 |
-
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 1186 |
-
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 1187 |
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
| 1188 |
encoder_batch_size, encoder_sequence_length, _ = (
|
| 1189 |
encoder_hidden_states.size()
|
|
@@ -1218,29 +932,15 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 1218 |
|
| 1219 |
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
| 1220 |
|
| 1221 |
-
if self.gradient_checkpointing and self.training:
|
| 1222 |
-
if use_cache:
|
| 1223 |
-
logger.warning_once(
|
| 1224 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 1225 |
-
)
|
| 1226 |
-
use_cache = False
|
| 1227 |
-
|
| 1228 |
-
presents = () if use_cache else None
|
| 1229 |
all_self_attentions = () if output_attentions else None
|
| 1230 |
all_cross_attentions = (
|
| 1231 |
() if output_attentions and self.config.add_cross_attention else None
|
| 1232 |
)
|
| 1233 |
all_hidden_states = () if output_hidden_states else None
|
| 1234 |
-
for i in
|
| 1235 |
-
block, layer_past = self.h[i], past_key_values[i]
|
| 1236 |
# Model parallel
|
| 1237 |
if self.model_parallel:
|
| 1238 |
torch.cuda.set_device(hidden_states.device)
|
| 1239 |
-
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
| 1240 |
-
if layer_past is not None:
|
| 1241 |
-
layer_past = tuple(
|
| 1242 |
-
past_state.to(hidden_states.device) for past_state in layer_past
|
| 1243 |
-
)
|
| 1244 |
# Ensure that attention_mask is always on the same device as hidden_states
|
| 1245 |
if attention_mask is not None:
|
| 1246 |
attention_mask = attention_mask.to(hidden_states.device)
|
|
@@ -1253,8 +953,9 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 1253 |
outputs = self._gradient_checkpointing_func(
|
| 1254 |
block.__call__,
|
| 1255 |
hidden_states,
|
| 1256 |
-
|
| 1257 |
-
|
|
|
|
| 1258 |
head_mask[i],
|
| 1259 |
encoder_hidden_states,
|
| 1260 |
encoder_attention_mask,
|
|
@@ -1264,27 +965,23 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 1264 |
else:
|
| 1265 |
outputs = block(
|
| 1266 |
hidden_states,
|
| 1267 |
-
|
| 1268 |
-
|
|
|
|
| 1269 |
head_mask=head_mask[i],
|
| 1270 |
encoder_hidden_states=encoder_hidden_states,
|
| 1271 |
encoder_attention_mask=encoder_attention_mask,
|
| 1272 |
use_cache=use_cache,
|
| 1273 |
output_attentions=output_attentions,
|
|
|
|
| 1274 |
)
|
| 1275 |
|
| 1276 |
hidden_states = outputs[0]
|
| 1277 |
-
if use_cache is True:
|
| 1278 |
-
presents = presents + (outputs[1],)
|
| 1279 |
|
| 1280 |
if output_attentions:
|
| 1281 |
-
all_self_attentions = all_self_attentions + (
|
| 1282 |
-
outputs[2 if use_cache else 1],
|
| 1283 |
-
)
|
| 1284 |
if self.config.add_cross_attention:
|
| 1285 |
-
all_cross_attentions = all_cross_attentions + (
|
| 1286 |
-
outputs[3 if use_cache else 2],
|
| 1287 |
-
)
|
| 1288 |
|
| 1289 |
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 1290 |
if self.model_parallel:
|
|
@@ -1299,12 +996,19 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 1299 |
if output_hidden_states:
|
| 1300 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 1301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1302 |
if not return_dict:
|
| 1303 |
return tuple(
|
| 1304 |
v
|
| 1305 |
for v in [
|
| 1306 |
hidden_states,
|
| 1307 |
-
|
| 1308 |
all_hidden_states,
|
| 1309 |
all_self_attentions,
|
| 1310 |
all_cross_attentions,
|
|
@@ -1314,19 +1018,153 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 1314 |
|
| 1315 |
return BaseModelOutputWithPastAndCrossAttentions(
|
| 1316 |
last_hidden_state=hidden_states,
|
| 1317 |
-
past_key_values=
|
| 1318 |
hidden_states=all_hidden_states,
|
| 1319 |
attentions=all_self_attentions,
|
| 1320 |
cross_attentions=all_cross_attentions,
|
| 1321 |
)
|
| 1322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1323 |
|
| 1324 |
-
|
| 1325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1326 |
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
| 1327 |
embeddings).
|
| 1328 |
-
"""
|
| 1329 |
-
GPT2_START_DOCSTRING,
|
| 1330 |
)
|
| 1331 |
class GPT2LMHeadModel(GPT2PreTrainedModel, GenerationMixin):
|
| 1332 |
_tied_weights_keys = ["lm_head.weight"]
|
|
@@ -1380,16 +1218,12 @@ class GPT2LMHeadModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1380 |
def set_output_embeddings(self, new_embeddings):
|
| 1381 |
self.lm_head = new_embeddings
|
| 1382 |
|
| 1383 |
-
@
|
| 1384 |
-
@add_code_sample_docstrings(
|
| 1385 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1386 |
-
output_type=CausalLMOutputWithCrossAttentions,
|
| 1387 |
-
config_class=_CONFIG_FOR_DOC,
|
| 1388 |
-
)
|
| 1389 |
def forward(
|
| 1390 |
self,
|
| 1391 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1392 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
| 1393 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1394 |
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1395 |
position_ids: Optional[torch.LongTensor] = None,
|
|
@@ -1402,9 +1236,22 @@ class GPT2LMHeadModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1402 |
output_attentions: Optional[bool] = None,
|
| 1403 |
output_hidden_states: Optional[bool] = None,
|
| 1404 |
return_dict: Optional[bool] = None,
|
|
|
|
| 1405 |
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
| 1406 |
r"""
|
| 1407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1408 |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1409 |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 1410 |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
@@ -1417,6 +1264,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1417 |
input_ids,
|
| 1418 |
past_key_values=past_key_values,
|
| 1419 |
attention_mask=attention_mask,
|
|
|
|
| 1420 |
token_type_ids=token_type_ids,
|
| 1421 |
position_ids=position_ids,
|
| 1422 |
head_mask=head_mask,
|
|
@@ -1439,15 +1287,12 @@ class GPT2LMHeadModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1439 |
|
| 1440 |
loss = None
|
| 1441 |
if labels is not None:
|
| 1442 |
-
# move labels to correct device to enable model parallelism
|
| 1443 |
-
labels = labels.to(lm_logits.device)
|
| 1444 |
-
# Shift so that tokens < n predict n
|
| 1445 |
-
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1446 |
-
shift_labels = labels[..., 1:].contiguous()
|
| 1447 |
# Flatten the tokens
|
| 1448 |
-
|
| 1449 |
-
|
| 1450 |
-
|
|
|
|
|
|
|
| 1451 |
)
|
| 1452 |
|
| 1453 |
if not return_dict:
|
|
@@ -1463,32 +1308,14 @@ class GPT2LMHeadModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1463 |
cross_attentions=transformer_outputs.cross_attentions,
|
| 1464 |
)
|
| 1465 |
|
| 1466 |
-
@staticmethod
|
| 1467 |
-
def _reorder_cache(
|
| 1468 |
-
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 1469 |
-
) -> Tuple[Tuple[torch.Tensor]]:
|
| 1470 |
-
"""
|
| 1471 |
-
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 1472 |
-
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 1473 |
-
beam_idx at every generation step.
|
| 1474 |
-
"""
|
| 1475 |
-
return tuple(
|
| 1476 |
-
tuple(
|
| 1477 |
-
past_state.index_select(0, beam_idx.to(past_state.device))
|
| 1478 |
-
for past_state in layer_past
|
| 1479 |
-
)
|
| 1480 |
-
for layer_past in past_key_values
|
| 1481 |
-
)
|
| 1482 |
-
|
| 1483 |
|
| 1484 |
-
@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1485 |
"""
|
| 1486 |
-
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
| 1487 |
-
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
| 1488 |
-
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
| 1489 |
-
input sequence).
|
| 1490 |
-
""",
|
| 1491 |
-
GPT2_START_DOCSTRING,
|
| 1492 |
)
|
| 1493 |
class GPT2DoubleHeadsModel(GPT2PreTrainedModel, GenerationMixin):
|
| 1494 |
_tied_weights_keys = ["lm_head.weight"]
|
|
@@ -1498,7 +1325,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1498 |
config.num_labels = 1
|
| 1499 |
self.transformer = GPT2Model(config)
|
| 1500 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 1501 |
-
self.multiple_choice_head =
|
| 1502 |
|
| 1503 |
# Model parallel
|
| 1504 |
self.model_parallel = False
|
|
@@ -1548,14 +1375,12 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1548 |
def set_output_embeddings(self, new_embeddings):
|
| 1549 |
self.lm_head = new_embeddings
|
| 1550 |
|
| 1551 |
-
@
|
| 1552 |
-
@replace_return_docstrings(
|
| 1553 |
-
output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC
|
| 1554 |
-
)
|
| 1555 |
def forward(
|
| 1556 |
self,
|
| 1557 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1558 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
|
|
|
| 1559 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1560 |
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1561 |
position_ids: Optional[torch.LongTensor] = None,
|
|
@@ -1571,10 +1396,22 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1571 |
**kwargs,
|
| 1572 |
) -> Union[Tuple, GPT2DoubleHeadsModelOutput]:
|
| 1573 |
r"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1574 |
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
|
| 1575 |
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
|
| 1576 |
1]`.
|
| 1577 |
-
labels (`torch.LongTensor` of shape `(batch_size,
|
| 1578 |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1579 |
`labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to
|
| 1580 |
`-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`
|
|
@@ -1582,8 +1419,6 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1582 |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
| 1583 |
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
|
| 1584 |
|
| 1585 |
-
Return:
|
| 1586 |
-
|
| 1587 |
Example:
|
| 1588 |
|
| 1589 |
```python
|
|
@@ -1616,6 +1451,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1616 |
transformer_outputs = self.transformer(
|
| 1617 |
input_ids,
|
| 1618 |
past_key_values=past_key_values,
|
|
|
|
| 1619 |
attention_mask=attention_mask,
|
| 1620 |
token_type_ids=token_type_ids,
|
| 1621 |
position_ids=position_ids,
|
|
@@ -1687,8 +1523,8 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1687 |
)
|
| 1688 |
|
| 1689 |
|
| 1690 |
-
@
|
| 1691 |
-
"""
|
| 1692 |
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
| 1693 |
|
| 1694 |
[`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
@@ -1699,8 +1535,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel, GenerationMixin):
|
|
| 1699 |
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1700 |
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1701 |
each row of the batch).
|
| 1702 |
-
"""
|
| 1703 |
-
GPT2_START_DOCSTRING,
|
| 1704 |
)
|
| 1705 |
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
| 1706 |
def __init__(self, config):
|
|
@@ -1716,12 +1551,7 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1716 |
# Initialize weights and apply final processing
|
| 1717 |
self.post_init()
|
| 1718 |
|
| 1719 |
-
@
|
| 1720 |
-
@add_code_sample_docstrings(
|
| 1721 |
-
checkpoint="microsoft/DialogRPT-updown",
|
| 1722 |
-
output_type=SequenceClassifierOutputWithPast,
|
| 1723 |
-
config_class=_CONFIG_FOR_DOC,
|
| 1724 |
-
)
|
| 1725 |
def forward(
|
| 1726 |
self,
|
| 1727 |
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -1738,6 +1568,18 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1738 |
return_dict: Optional[bool] = None,
|
| 1739 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1740 |
r"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1741 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1742 |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1743 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
@@ -1768,28 +1610,30 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1768 |
else:
|
| 1769 |
batch_size, sequence_length = inputs_embeds.shape[:2]
|
| 1770 |
|
| 1771 |
-
|
| 1772 |
-
|
| 1773 |
-
|
|
|
|
| 1774 |
if self.config.pad_token_id is None:
|
| 1775 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1776 |
else:
|
| 1777 |
-
|
| 1778 |
-
|
| 1779 |
-
|
| 1780 |
-
|
| 1781 |
-
|
| 1782 |
-
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1783 |
-
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1784 |
-
else:
|
| 1785 |
-
sequence_lengths = -1
|
| 1786 |
-
logger.warning_once(
|
| 1787 |
-
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1788 |
-
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 1789 |
-
)
|
| 1790 |
|
| 1791 |
pooled_logits = logits[
|
| 1792 |
-
torch.arange(batch_size, device=logits.device),
|
| 1793 |
]
|
| 1794 |
|
| 1795 |
loss = None
|
|
@@ -1831,13 +1675,7 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1831 |
)
|
| 1832 |
|
| 1833 |
|
| 1834 |
-
@
|
| 1835 |
-
"""
|
| 1836 |
-
GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1837 |
-
Named-Entity-Recognition (NER) tasks.
|
| 1838 |
-
""",
|
| 1839 |
-
GPT2_START_DOCSTRING,
|
| 1840 |
-
)
|
| 1841 |
class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
| 1842 |
def __init__(self, config):
|
| 1843 |
super().__init__(config)
|
|
@@ -1863,29 +1701,7 @@ class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
|
| 1863 |
# Initialize weights and apply final processing
|
| 1864 |
self.post_init()
|
| 1865 |
|
| 1866 |
-
@
|
| 1867 |
-
# fmt: off
|
| 1868 |
-
@add_code_sample_docstrings(
|
| 1869 |
-
checkpoint="brad1141/gpt2-finetuned-comp2",
|
| 1870 |
-
output_type=TokenClassifierOutput,
|
| 1871 |
-
config_class=_CONFIG_FOR_DOC,
|
| 1872 |
-
expected_loss=0.25,
|
| 1873 |
-
expected_output=[
|
| 1874 |
-
"Lead",
|
| 1875 |
-
"Lead",
|
| 1876 |
-
"Lead",
|
| 1877 |
-
"Position",
|
| 1878 |
-
"Lead",
|
| 1879 |
-
"Lead",
|
| 1880 |
-
"Lead",
|
| 1881 |
-
"Lead",
|
| 1882 |
-
"Lead",
|
| 1883 |
-
"Lead",
|
| 1884 |
-
"Lead",
|
| 1885 |
-
"Lead",
|
| 1886 |
-
],
|
| 1887 |
-
)
|
| 1888 |
-
# fmt: on
|
| 1889 |
def forward(
|
| 1890 |
self,
|
| 1891 |
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -1902,6 +1718,18 @@ class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
|
| 1902 |
return_dict: Optional[bool] = None,
|
| 1903 |
) -> Union[Tuple, TokenClassifierOutput]:
|
| 1904 |
r"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1905 |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1906 |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1907 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
@@ -1947,13 +1775,7 @@ class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
|
| 1947 |
)
|
| 1948 |
|
| 1949 |
|
| 1950 |
-
@
|
| 1951 |
-
"""
|
| 1952 |
-
The GPT-2 Model transformer with a span classification head on top for extractive question-answering tasks like
|
| 1953 |
-
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 1954 |
-
""",
|
| 1955 |
-
GPT2_START_DOCSTRING,
|
| 1956 |
-
)
|
| 1957 |
class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
|
| 1958 |
def __init__(self, config):
|
| 1959 |
super().__init__(config)
|
|
@@ -1968,15 +1790,7 @@ class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
|
|
| 1968 |
# Initialize weights and apply final processing
|
| 1969 |
self.post_init()
|
| 1970 |
|
| 1971 |
-
@
|
| 1972 |
-
GPT2_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
| 1973 |
-
)
|
| 1974 |
-
@add_code_sample_docstrings(
|
| 1975 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1976 |
-
output_type=QuestionAnsweringModelOutput,
|
| 1977 |
-
config_class=_CONFIG_FOR_DOC,
|
| 1978 |
-
real_checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1979 |
-
)
|
| 1980 |
def forward(
|
| 1981 |
self,
|
| 1982 |
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -1992,14 +1806,18 @@ class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
|
|
| 1992 |
return_dict: Optional[bool] = None,
|
| 1993 |
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1994 |
r"""
|
| 1995 |
-
|
| 1996 |
-
|
| 1997 |
-
|
| 1998 |
-
|
| 1999 |
-
|
| 2000 |
-
|
| 2001 |
-
|
| 2002 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2003 |
"""
|
| 2004 |
return_dict = (
|
| 2005 |
return_dict if return_dict is not None else self.config.use_return_dict
|
|
@@ -2052,3 +1870,15 @@ class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
|
|
| 2052 |
hidden_states=outputs.hidden_states,
|
| 2053 |
attentions=outputs.attentions,
|
| 2054 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
import os
|
| 20 |
import warnings
|
| 21 |
from dataclasses import dataclass
|
| 22 |
+
from typing import Callable, Optional, Tuple, Union
|
| 23 |
|
| 24 |
import torch
|
|
|
|
|
|
|
| 25 |
from torch import nn
|
| 26 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 27 |
|
| 28 |
+
from transformers.activations import ACT2FN, get_activation
|
| 29 |
+
from transformers.cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
|
| 30 |
from transformers.generation import GenerationMixin
|
| 31 |
from transformers.modeling_attn_mask_utils import (
|
| 32 |
+
AttentionMaskConverter,
|
| 33 |
_prepare_4d_attention_mask_for_sdpa,
|
|
|
|
| 34 |
)
|
| 35 |
from transformers.modeling_outputs import (
|
| 36 |
BaseModelOutputWithPastAndCrossAttentions,
|
|
|
|
| 39 |
SequenceClassifierOutputWithPast,
|
| 40 |
TokenClassifierOutput,
|
| 41 |
)
|
| 42 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 43 |
from transformers.pytorch_utils import (
|
| 44 |
Conv1D,
|
| 45 |
find_pruneable_heads_and_indices,
|
|
|
|
| 47 |
)
|
| 48 |
from transformers.utils import (
|
| 49 |
ModelOutput,
|
|
|
|
| 50 |
add_start_docstrings,
|
| 51 |
+
auto_docstring,
|
|
|
|
|
|
|
|
|
|
| 52 |
logging,
|
|
|
|
| 53 |
)
|
| 54 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 55 |
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 56 |
from .configuration_gpt2 import GPT2Config
|
| 57 |
+
from transformers.models.gpt2.modeling_gpt2 import (
|
| 58 |
+
load_tf_weights_in_gpt2,
|
| 59 |
+
eager_attention_forward,
|
| 60 |
+
)
|
| 61 |
|
| 62 |
|
| 63 |
logger = logging.get_logger(__name__)
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
class GPT2Attention(nn.Module):
|
| 67 |
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
|
|
|
| 129 |
self.num_heads = self.num_heads - len(heads)
|
| 130 |
self.pruned_heads = self.pruned_heads.union(heads)
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
def _upcast_and_reordered_attn(
|
| 133 |
self, query, key, value, attention_mask=None, head_mask=None
|
| 134 |
):
|
|
|
|
| 172 |
mask_value = torch.finfo(attn_weights.dtype).min
|
| 173 |
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 174 |
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 175 |
+
mask_value = torch.tensor(
|
| 176 |
+
mask_value, dtype=attn_weights.dtype, device=attn_weights.device
|
| 177 |
)
|
| 178 |
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
| 179 |
|
|
|
|
| 196 |
attn_weights = attn_weights * head_mask
|
| 197 |
|
| 198 |
attn_output = torch.matmul(attn_weights, value)
|
| 199 |
+
attn_output = attn_output.transpose(1, 2)
|
| 200 |
|
| 201 |
return attn_output, attn_weights
|
| 202 |
|
| 203 |
+
@deprecate_kwarg(
|
| 204 |
+
"layer_past",
|
| 205 |
+
new_name="past_key_value",
|
| 206 |
+
version="4.53.0",
|
| 207 |
+
raise_if_both_names=True,
|
| 208 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
def forward(
|
| 210 |
self,
|
| 211 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 212 |
+
past_key_value: Optional[Cache] = None,
|
| 213 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 214 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 215 |
head_mask: Optional[torch.FloatTensor] = None,
|
| 216 |
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 217 |
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
| 218 |
output_attentions: Optional[bool] = False,
|
| 219 |
+
**kwargs,
|
| 220 |
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
| 221 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 222 |
+
if is_cross_attention:
|
| 223 |
if not hasattr(self, "q_attn"):
|
| 224 |
raise ValueError(
|
| 225 |
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
| 226 |
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
| 227 |
)
|
| 228 |
|
| 229 |
+
query_states = self.q_attn(hidden_states)
|
| 230 |
+
key_states, value_states = self.c_attn(encoder_hidden_states).split(
|
| 231 |
self.split_size, dim=2
|
| 232 |
)
|
| 233 |
attention_mask = encoder_attention_mask
|
| 234 |
else:
|
| 235 |
+
query_states, key_states, value_states = self.c_attn(hidden_states).split(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
self.split_size, dim=2
|
| 237 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
+
shape_q = (query_states.shape[0],query_states.shape[1], -1, self.head_dim)
|
| 240 |
+
shape_kv = (key_states.shape[0], key_states.shape[1],-1, self.head_dim)
|
|
|
|
| 241 |
|
| 242 |
+
query_states = query_states.view(shape_q).transpose(1, 2)
|
| 243 |
+
key_states = key_states.view(shape_kv).transpose(1, 2)
|
| 244 |
+
value_states = value_states.view(shape_kv).transpose(1, 2)
|
| 245 |
|
| 246 |
+
if past_key_value is not None:
|
| 247 |
+
if isinstance(past_key_value, EncoderDecoderCache):
|
| 248 |
+
if is_cross_attention:
|
| 249 |
+
past_key_value = past_key_value.cross_attention_cache
|
| 250 |
+
else:
|
| 251 |
+
past_key_value = past_key_value.self_attention_cache
|
| 252 |
+
cache_kwargs = {"cache_position": cache_position}
|
| 253 |
+
key_states, value_states = past_key_value.update(
|
| 254 |
+
key_states, value_states, self.layer_idx, cache_kwargs=cache_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
)
|
| 256 |
|
| 257 |
+
is_causal = (
|
| 258 |
+
attention_mask is None
|
| 259 |
+
and query_states.shape[-2] > 1
|
| 260 |
+
and not is_cross_attention
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
+
using_eager = self.config._attn_implementation == "eager"
|
| 264 |
+
attention_interface: Callable = eager_attention_forward
|
| 265 |
+
if self.config._attn_implementation != "eager":
|
| 266 |
+
if self.config._attn_implementation == "sdpa" and (
|
| 267 |
+
output_attentions or head_mask is not None
|
| 268 |
+
):
|
| 269 |
+
using_eager = True
|
| 270 |
+
logger.warning_once(
|
| 271 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 272 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 273 |
)
|
| 274 |
+
else:
|
| 275 |
+
# Attention functions are consistent with previous equivalent attention classes, however they do not support some options
|
| 276 |
+
# (e.g. layer scaling, head mask) that eager supports. These implementations are thus equivalent to previous code, but
|
| 277 |
+
# not necessarily to eager (if mentioned options are provided).
|
| 278 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[
|
| 279 |
+
self.config._attn_implementation
|
| 280 |
+
]
|
| 281 |
|
| 282 |
+
if using_eager and self.reorder_and_upcast_attn:
|
| 283 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(
|
| 284 |
+
query_states, key_states, value_states, attention_mask, head_mask
|
| 285 |
)
|
|
|
|
| 286 |
else:
|
| 287 |
+
attn_output, attn_weights = attention_interface(
|
| 288 |
+
self,
|
| 289 |
+
query_states,
|
| 290 |
+
key_states,
|
| 291 |
+
value_states,
|
| 292 |
+
attention_mask,
|
| 293 |
+
head_mask=head_mask,
|
| 294 |
+
dropout=self.attn_dropout.p if self.training else 0.0,
|
| 295 |
+
is_causal=is_causal,
|
| 296 |
+
**kwargs,
|
| 297 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
+
attn_output = attn_output.reshape(attn_output.shape[0],attn_output.shape[1], -1).contiguous()
|
| 300 |
attn_output = self.c_proj(attn_output)
|
| 301 |
attn_output = self.resid_dropout(attn_output)
|
| 302 |
|
| 303 |
+
return attn_output, attn_weights
|
| 304 |
|
| 305 |
|
| 306 |
class GPT2MLP(nn.Module):
|
|
|
|
| 322 |
return hidden_states
|
| 323 |
|
| 324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
class GPT2Block(nn.Module):
|
| 326 |
def __init__(self, config, layer_idx=None):
|
| 327 |
super().__init__()
|
| 328 |
hidden_size = config.hidden_size
|
| 329 |
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
|
|
|
| 330 |
|
| 331 |
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 332 |
+
self.attn = GPT2Attention(config=config, layer_idx=layer_idx)
|
| 333 |
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 334 |
|
| 335 |
if config.add_cross_attention:
|
| 336 |
+
self.crossattention = GPT2Attention(
|
| 337 |
config=config, is_cross_attention=True, layer_idx=layer_idx
|
| 338 |
)
|
| 339 |
self.ln_cross_attn = nn.LayerNorm(
|
|
|
|
| 342 |
|
| 343 |
self.mlp = GPT2MLP(inner_dim, config)
|
| 344 |
|
| 345 |
+
@deprecate_kwarg(
|
| 346 |
+
"layer_past",
|
| 347 |
+
new_name="past_key_value",
|
| 348 |
+
version="4.53.0",
|
| 349 |
+
raise_if_both_names=True,
|
| 350 |
+
)
|
| 351 |
def forward(
|
| 352 |
self,
|
| 353 |
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 354 |
+
past_key_value: Optional[Cache] = None,
|
| 355 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 356 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 357 |
head_mask: Optional[torch.FloatTensor] = None,
|
| 358 |
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 359 |
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 360 |
use_cache: Optional[bool] = False,
|
| 361 |
output_attentions: Optional[bool] = False,
|
| 362 |
+
**kwargs,
|
| 363 |
) -> Union[
|
| 364 |
Tuple[torch.Tensor],
|
| 365 |
Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]],
|
| 366 |
]:
|
| 367 |
residual = hidden_states
|
| 368 |
hidden_states = self.ln_1(hidden_states)
|
| 369 |
+
attn_output, self_attn_weights = self.attn(
|
| 370 |
hidden_states,
|
| 371 |
+
past_key_value=past_key_value,
|
| 372 |
+
cache_position=cache_position,
|
| 373 |
attention_mask=attention_mask,
|
| 374 |
head_mask=head_mask,
|
| 375 |
use_cache=use_cache,
|
| 376 |
output_attentions=output_attentions,
|
| 377 |
+
**kwargs,
|
| 378 |
)
|
|
|
|
|
|
|
| 379 |
# residual connection
|
| 380 |
hidden_states = attn_output + residual
|
| 381 |
|
|
|
|
| 388 |
)
|
| 389 |
residual = hidden_states
|
| 390 |
hidden_states = self.ln_cross_attn(hidden_states)
|
| 391 |
+
cross_attn_output, cross_attn_weights = self.crossattention(
|
| 392 |
hidden_states,
|
| 393 |
+
past_key_value=past_key_value,
|
| 394 |
attention_mask=attention_mask,
|
| 395 |
head_mask=head_mask,
|
| 396 |
encoder_hidden_states=encoder_hidden_states,
|
| 397 |
encoder_attention_mask=encoder_attention_mask,
|
| 398 |
output_attentions=output_attentions,
|
| 399 |
)
|
|
|
|
| 400 |
# residual connection
|
| 401 |
+
hidden_states = residual + cross_attn_output
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
residual = hidden_states
|
| 404 |
hidden_states = self.ln_2(hidden_states)
|
|
|
|
| 406 |
# residual connection
|
| 407 |
hidden_states = residual + feed_forward_hidden_states
|
| 408 |
|
| 409 |
+
outputs = (hidden_states,)
|
| 410 |
+
if output_attentions:
|
| 411 |
+
outputs += (self_attn_weights,)
|
| 412 |
+
if encoder_hidden_states is not None:
|
| 413 |
+
outputs += (cross_attn_weights,)
|
| 414 |
|
| 415 |
+
return outputs
|
| 416 |
|
| 417 |
|
| 418 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMSequenceSummary with XLM->GPT2
|
| 419 |
+
class GPT2SequenceSummary(nn.Module):
|
| 420 |
+
r"""
|
| 421 |
+
Compute a single vector summary of a sequence hidden states.
|
| 422 |
+
|
| 423 |
+
Args:
|
| 424 |
+
config ([`GPT2Config`]):
|
| 425 |
+
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
|
| 426 |
+
config class of your model for the default values it uses):
|
| 427 |
+
|
| 428 |
+
- **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
|
| 429 |
+
|
| 430 |
+
- `"last"` -- Take the last token hidden state (like XLNet)
|
| 431 |
+
- `"first"` -- Take the first token hidden state (like Bert)
|
| 432 |
+
- `"mean"` -- Take the mean of all tokens hidden states
|
| 433 |
+
- `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
|
| 434 |
+
- `"attn"` -- Not implemented now, use multi-head attention
|
| 435 |
+
|
| 436 |
+
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
|
| 437 |
+
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
|
| 438 |
+
(otherwise to `config.hidden_size`).
|
| 439 |
+
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
|
| 440 |
+
another string or `None` will add no activation.
|
| 441 |
+
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
|
| 442 |
+
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
|
| 443 |
"""
|
| 444 |
|
| 445 |
+
def __init__(self, config: GPT2Config):
|
| 446 |
+
super().__init__()
|
| 447 |
+
|
| 448 |
+
self.summary_type = getattr(config, "summary_type", "last")
|
| 449 |
+
if self.summary_type == "attn":
|
| 450 |
+
# We should use a standard multi-head attention module with absolute positional embedding for that.
|
| 451 |
+
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
|
| 452 |
+
# We can probably just use the multi-head attention module of PyTorch >=1.1.0
|
| 453 |
+
raise NotImplementedError
|
| 454 |
+
|
| 455 |
+
self.summary = nn.Identity()
|
| 456 |
+
if hasattr(config, "summary_use_proj") and config.summary_use_proj:
|
| 457 |
+
if (
|
| 458 |
+
hasattr(config, "summary_proj_to_labels")
|
| 459 |
+
and config.summary_proj_to_labels
|
| 460 |
+
and config.num_labels > 0
|
| 461 |
+
):
|
| 462 |
+
num_classes = config.num_labels
|
| 463 |
+
else:
|
| 464 |
+
num_classes = config.hidden_size
|
| 465 |
+
self.summary = nn.Linear(config.hidden_size, num_classes)
|
| 466 |
+
|
| 467 |
+
activation_string = getattr(config, "summary_activation", None)
|
| 468 |
+
self.activation: Callable = (
|
| 469 |
+
get_activation(activation_string) if activation_string else nn.Identity()
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
self.first_dropout = nn.Identity()
|
| 473 |
+
if (
|
| 474 |
+
hasattr(config, "summary_first_dropout")
|
| 475 |
+
and config.summary_first_dropout > 0
|
| 476 |
+
):
|
| 477 |
+
self.first_dropout = nn.Dropout(config.summary_first_dropout)
|
| 478 |
+
|
| 479 |
+
self.last_dropout = nn.Identity()
|
| 480 |
+
if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
|
| 481 |
+
self.last_dropout = nn.Dropout(config.summary_last_dropout)
|
| 482 |
+
|
| 483 |
+
def forward(
|
| 484 |
+
self,
|
| 485 |
+
hidden_states: torch.FloatTensor,
|
| 486 |
+
cls_index: Optional[torch.LongTensor] = None,
|
| 487 |
+
) -> torch.FloatTensor:
|
| 488 |
+
"""
|
| 489 |
+
Compute a single vector summary of a sequence hidden states.
|
| 490 |
+
|
| 491 |
+
Args:
|
| 492 |
+
hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
|
| 493 |
+
The hidden states of the last layer.
|
| 494 |
+
cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
|
| 495 |
+
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
|
| 496 |
+
|
| 497 |
+
Returns:
|
| 498 |
+
`torch.FloatTensor`: The summary of the sequence hidden states.
|
| 499 |
+
"""
|
| 500 |
+
if self.summary_type == "last":
|
| 501 |
+
output = hidden_states[:, -1]
|
| 502 |
+
elif self.summary_type == "first":
|
| 503 |
+
output = hidden_states[:, 0]
|
| 504 |
+
elif self.summary_type == "mean":
|
| 505 |
+
output = hidden_states.mean(dim=1)
|
| 506 |
+
elif self.summary_type == "cls_index":
|
| 507 |
+
if cls_index is None:
|
| 508 |
+
cls_index = torch.full_like(
|
| 509 |
+
hidden_states[..., :1, :],
|
| 510 |
+
hidden_states.shape[-2] - 1,
|
| 511 |
+
dtype=torch.long,
|
| 512 |
+
)
|
| 513 |
+
else:
|
| 514 |
+
cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
|
| 515 |
+
cls_index = cls_index.expand(
|
| 516 |
+
(-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)
|
| 517 |
+
)
|
| 518 |
+
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
|
| 519 |
+
output = hidden_states.gather(-2, cls_index).squeeze(
|
| 520 |
+
-2
|
| 521 |
+
) # shape (bsz, XX, hidden_size)
|
| 522 |
+
elif self.summary_type == "attn":
|
| 523 |
+
raise NotImplementedError
|
| 524 |
+
|
| 525 |
+
output = self.first_dropout(output)
|
| 526 |
+
output = self.summary(output)
|
| 527 |
+
output = self.activation(output)
|
| 528 |
+
output = self.last_dropout(output)
|
| 529 |
+
|
| 530 |
+
return output
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
@auto_docstring
|
| 534 |
+
class GPT2PreTrainedModel(PreTrainedModel):
|
| 535 |
config_class = GPT2Config
|
| 536 |
load_tf_weights = load_tf_weights_in_gpt2
|
| 537 |
base_model_prefix = "transformer"
|
|
|
|
| 541 |
_skip_keys_device_placement = "past_key_values"
|
| 542 |
_supports_flash_attn_2 = True
|
| 543 |
_supports_sdpa = True
|
| 544 |
+
_supports_attention_backend = True
|
| 545 |
+
_supports_cache_class = True
|
| 546 |
+
_supports_static_cache = True
|
| 547 |
|
| 548 |
def __init__(self, *inputs, **kwargs):
|
| 549 |
super().__init__(*inputs, **kwargs)
|
|
|
|
| 617 |
|
| 618 |
loss: Optional[torch.FloatTensor] = None
|
| 619 |
mc_loss: Optional[torch.FloatTensor] = None
|
| 620 |
+
logits: Optional[torch.FloatTensor] = None
|
| 621 |
+
mc_logits: Optional[torch.FloatTensor] = None
|
| 622 |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 623 |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 624 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 625 |
|
| 626 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 627 |
PARALLELIZE_DOCSTRING = r"""
|
| 628 |
This is an experimental feature and is a subject to change at a moment's notice.
|
| 629 |
|
|
|
|
| 676 |
"""
|
| 677 |
|
| 678 |
|
| 679 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
| 680 |
class GPT2Model(GPT2PreTrainedModel):
|
| 681 |
_supports_param_buffer_assignment = False
|
| 682 |
|
|
|
|
| 766 |
for layer, heads in heads_to_prune.items():
|
| 767 |
self.h[layer].attn.prune_heads(heads)
|
| 768 |
|
| 769 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 770 |
def forward(
|
| 771 |
self,
|
| 772 |
input_ids: Optional[torch.LongTensor] = None,
|
| 773 |
+
past_key_values: Optional[Union[Tuple[Tuple[torch.Tensor]], Cache]] = None,
|
| 774 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 775 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 776 |
token_type_ids: Optional[torch.LongTensor] = None,
|
| 777 |
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
| 783 |
output_attentions: Optional[bool] = None,
|
| 784 |
output_hidden_states: Optional[bool] = None,
|
| 785 |
return_dict: Optional[bool] = None,
|
| 786 |
+
**kwargs,
|
| 787 |
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
| 788 |
+
r"""
|
| 789 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 790 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 791 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
| 792 |
+
sequence tokens in the vocabulary.
|
| 793 |
+
|
| 794 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 795 |
+
`input_ids`.
|
| 796 |
+
|
| 797 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 798 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 799 |
+
|
| 800 |
+
[What are input IDs?](../glossary#input-ids)
|
| 801 |
+
"""
|
| 802 |
output_attentions = (
|
| 803 |
output_attentions
|
| 804 |
if output_attentions is not None
|
|
|
|
| 834 |
if token_type_ids is not None:
|
| 835 |
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 836 |
|
| 837 |
+
if self.gradient_checkpointing and self.training:
|
| 838 |
+
if use_cache:
|
| 839 |
+
logger.warning_once(
|
| 840 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 841 |
+
)
|
| 842 |
+
use_cache = False
|
| 843 |
+
|
| 844 |
+
# based on pattern from src/transformers/models/whisper/modeling_whisper.py::WhisperDecoder
|
| 845 |
+
return_legacy_cache = False
|
| 846 |
+
if use_cache:
|
| 847 |
+
if past_key_values is None:
|
| 848 |
+
return_legacy_cache = True
|
| 849 |
+
past_key_values = DynamicCache()
|
| 850 |
+
elif not isinstance(past_key_values, Cache):
|
| 851 |
+
return_legacy_cache = True
|
| 852 |
+
logger.warning_once(
|
| 853 |
+
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.53.0. "
|
| 854 |
+
"You should pass an instance of `Cache` instead, e.g. "
|
| 855 |
+
"`past_key_values=DynamicCache.from_legacy_cache(past_key_values)`."
|
| 856 |
+
)
|
| 857 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 858 |
+
|
| 859 |
+
if self.config.add_cross_attention and not isinstance(
|
| 860 |
+
past_key_values, EncoderDecoderCache
|
| 861 |
+
):
|
| 862 |
+
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
|
| 863 |
|
| 864 |
if inputs_embeds is None:
|
| 865 |
inputs_embeds = self.wte(input_ids)
|
| 866 |
+
|
| 867 |
+
if cache_position is None:
|
| 868 |
+
past_seen_tokens = (
|
| 869 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 870 |
+
)
|
| 871 |
+
cache_position = torch.arange(
|
| 872 |
+
past_seen_tokens,
|
| 873 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
| 874 |
+
device=inputs_embeds.device,
|
| 875 |
+
)
|
| 876 |
+
if position_ids is None:
|
| 877 |
+
position_ids = cache_position.unsqueeze(0)
|
| 878 |
+
|
| 879 |
position_embeds = self.wpe(position_ids)
|
| 880 |
+
hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
|
| 881 |
|
| 882 |
# Attention mask.
|
| 883 |
+
# ._update_causal_mask() and ._prepare_4d_causal_attention_mask_with_cache_position() copied from LlamaModel
|
| 884 |
+
if attention_mask is not None and attention_mask.ndim < 4:
|
| 885 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
| 886 |
+
causal_mask = self._update_causal_mask(
|
| 887 |
+
attention_mask,
|
| 888 |
+
inputs_embeds,
|
| 889 |
+
cache_position,
|
| 890 |
+
past_key_values,
|
| 891 |
+
output_attentions,
|
| 892 |
+
)
|
| 893 |
+
|
| 894 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 895 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 896 |
_use_sdpa = (
|
| 897 |
self._attn_implementation == "sdpa"
|
| 898 |
and output_attentions is False
|
| 899 |
and head_mask is None
|
| 900 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 901 |
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
| 902 |
encoder_batch_size, encoder_sequence_length, _ = (
|
| 903 |
encoder_hidden_states.size()
|
|
|
|
| 932 |
|
| 933 |
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
| 934 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 935 |
all_self_attentions = () if output_attentions else None
|
| 936 |
all_cross_attentions = (
|
| 937 |
() if output_attentions and self.config.add_cross_attention else None
|
| 938 |
)
|
| 939 |
all_hidden_states = () if output_hidden_states else None
|
| 940 |
+
for i, block in enumerate(self.h):
|
|
|
|
| 941 |
# Model parallel
|
| 942 |
if self.model_parallel:
|
| 943 |
torch.cuda.set_device(hidden_states.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 944 |
# Ensure that attention_mask is always on the same device as hidden_states
|
| 945 |
if attention_mask is not None:
|
| 946 |
attention_mask = attention_mask.to(hidden_states.device)
|
|
|
|
| 953 |
outputs = self._gradient_checkpointing_func(
|
| 954 |
block.__call__,
|
| 955 |
hidden_states,
|
| 956 |
+
past_key_values,
|
| 957 |
+
cache_position,
|
| 958 |
+
causal_mask,
|
| 959 |
head_mask[i],
|
| 960 |
encoder_hidden_states,
|
| 961 |
encoder_attention_mask,
|
|
|
|
| 965 |
else:
|
| 966 |
outputs = block(
|
| 967 |
hidden_states,
|
| 968 |
+
past_key_value=past_key_values,
|
| 969 |
+
cache_position=cache_position,
|
| 970 |
+
attention_mask=causal_mask,
|
| 971 |
head_mask=head_mask[i],
|
| 972 |
encoder_hidden_states=encoder_hidden_states,
|
| 973 |
encoder_attention_mask=encoder_attention_mask,
|
| 974 |
use_cache=use_cache,
|
| 975 |
output_attentions=output_attentions,
|
| 976 |
+
**kwargs,
|
| 977 |
)
|
| 978 |
|
| 979 |
hidden_states = outputs[0]
|
|
|
|
|
|
|
| 980 |
|
| 981 |
if output_attentions:
|
| 982 |
+
all_self_attentions = all_self_attentions + (outputs[1],)
|
|
|
|
|
|
|
| 983 |
if self.config.add_cross_attention:
|
| 984 |
+
all_cross_attentions = all_cross_attentions + (outputs[2],)
|
|
|
|
|
|
|
| 985 |
|
| 986 |
# Model Parallel: If it's the last layer for that device, put things on the next device
|
| 987 |
if self.model_parallel:
|
|
|
|
| 996 |
if output_hidden_states:
|
| 997 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 998 |
|
| 999 |
+
past_key_values = past_key_values if use_cache else None
|
| 1000 |
+
if return_legacy_cache:
|
| 1001 |
+
past_key_values = (
|
| 1002 |
+
past_key_values.self_attention_cache.to_legacy_cache()
|
| 1003 |
+
if self.config.add_cross_attention
|
| 1004 |
+
else past_key_values.to_legacy_cache()
|
| 1005 |
+
)
|
| 1006 |
if not return_dict:
|
| 1007 |
return tuple(
|
| 1008 |
v
|
| 1009 |
for v in [
|
| 1010 |
hidden_states,
|
| 1011 |
+
past_key_values,
|
| 1012 |
all_hidden_states,
|
| 1013 |
all_self_attentions,
|
| 1014 |
all_cross_attentions,
|
|
|
|
| 1018 |
|
| 1019 |
return BaseModelOutputWithPastAndCrossAttentions(
|
| 1020 |
last_hidden_state=hidden_states,
|
| 1021 |
+
past_key_values=past_key_values,
|
| 1022 |
hidden_states=all_hidden_states,
|
| 1023 |
attentions=all_self_attentions,
|
| 1024 |
cross_attentions=all_cross_attentions,
|
| 1025 |
)
|
| 1026 |
|
| 1027 |
+
def _update_causal_mask(
|
| 1028 |
+
self,
|
| 1029 |
+
attention_mask: torch.Tensor,
|
| 1030 |
+
input_tensor: torch.Tensor,
|
| 1031 |
+
cache_position: torch.Tensor,
|
| 1032 |
+
past_key_values: Cache,
|
| 1033 |
+
output_attentions: bool,
|
| 1034 |
+
):
|
| 1035 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 1036 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 1037 |
+
return attention_mask
|
| 1038 |
+
return None
|
| 1039 |
+
|
| 1040 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 1041 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 1042 |
+
# to infer the attention mask.
|
| 1043 |
+
past_seen_tokens = (
|
| 1044 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1045 |
+
)
|
| 1046 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 1047 |
|
| 1048 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 1049 |
+
if (
|
| 1050 |
+
self.config._attn_implementation == "sdpa"
|
| 1051 |
+
and not using_static_cache
|
| 1052 |
+
and not output_attentions
|
| 1053 |
+
):
|
| 1054 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1055 |
+
attention_mask,
|
| 1056 |
+
inputs_embeds=input_tensor,
|
| 1057 |
+
past_key_values_length=past_seen_tokens,
|
| 1058 |
+
is_training=self.training,
|
| 1059 |
+
):
|
| 1060 |
+
return None
|
| 1061 |
+
|
| 1062 |
+
dtype = input_tensor.dtype
|
| 1063 |
+
sequence_length = input_tensor.shape[1]
|
| 1064 |
+
if using_static_cache:
|
| 1065 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 1066 |
+
else:
|
| 1067 |
+
target_length = (
|
| 1068 |
+
attention_mask.shape[-1]
|
| 1069 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 1070 |
+
else past_seen_tokens + sequence_length + 1
|
| 1071 |
+
)
|
| 1072 |
+
|
| 1073 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 1074 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 1075 |
+
attention_mask,
|
| 1076 |
+
sequence_length=sequence_length,
|
| 1077 |
+
target_length=target_length,
|
| 1078 |
+
dtype=dtype,
|
| 1079 |
+
cache_position=cache_position,
|
| 1080 |
+
batch_size=input_tensor.shape[0],
|
| 1081 |
+
)
|
| 1082 |
+
|
| 1083 |
+
if (
|
| 1084 |
+
self.config._attn_implementation == "sdpa"
|
| 1085 |
+
and attention_mask is not None
|
| 1086 |
+
and attention_mask.device.type == "cuda"
|
| 1087 |
+
and not output_attentions
|
| 1088 |
+
):
|
| 1089 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1090 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1091 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1092 |
+
min_dtype = torch.finfo(dtype).min
|
| 1093 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
| 1094 |
+
causal_mask, min_dtype
|
| 1095 |
+
)
|
| 1096 |
+
|
| 1097 |
+
return causal_mask
|
| 1098 |
+
|
| 1099 |
+
@staticmethod
|
| 1100 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1101 |
+
attention_mask: torch.Tensor,
|
| 1102 |
+
sequence_length: int,
|
| 1103 |
+
target_length: int,
|
| 1104 |
+
dtype: torch.dtype,
|
| 1105 |
+
cache_position: torch.Tensor,
|
| 1106 |
+
batch_size: int,
|
| 1107 |
+
**kwargs,
|
| 1108 |
+
):
|
| 1109 |
+
"""
|
| 1110 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 1111 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 1112 |
+
|
| 1113 |
+
Args:
|
| 1114 |
+
attention_mask (`torch.Tensor`):
|
| 1115 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
| 1116 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
| 1117 |
+
sequence_length (`int`):
|
| 1118 |
+
The sequence length being processed.
|
| 1119 |
+
target_length (`int`):
|
| 1120 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 1121 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 1122 |
+
dtype (`torch.dtype`):
|
| 1123 |
+
The dtype to use for the 4D attention mask.
|
| 1124 |
+
cache_position (`torch.Tensor`):
|
| 1125 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 1126 |
+
batch_size (`torch.Tensor`):
|
| 1127 |
+
Batch size.
|
| 1128 |
+
"""
|
| 1129 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1130 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 1131 |
+
causal_mask = attention_mask
|
| 1132 |
+
else:
|
| 1133 |
+
min_dtype = torch.finfo(dtype).min
|
| 1134 |
+
causal_mask = torch.full(
|
| 1135 |
+
(sequence_length, target_length),
|
| 1136 |
+
fill_value=min_dtype,
|
| 1137 |
+
dtype=dtype,
|
| 1138 |
+
device=cache_position.device,
|
| 1139 |
+
)
|
| 1140 |
+
if sequence_length != 1:
|
| 1141 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1142 |
+
causal_mask *= torch.arange(
|
| 1143 |
+
target_length, device=cache_position.device
|
| 1144 |
+
) > cache_position.reshape(-1, 1)
|
| 1145 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 1146 |
+
if attention_mask is not None:
|
| 1147 |
+
causal_mask = (
|
| 1148 |
+
causal_mask.clone()
|
| 1149 |
+
) # copy to contiguous memory for in-place edit
|
| 1150 |
+
mask_length = attention_mask.shape[-1]
|
| 1151 |
+
padding_mask = (
|
| 1152 |
+
causal_mask[:, :, :, :mask_length]
|
| 1153 |
+
+ attention_mask[:, None, None, :]
|
| 1154 |
+
)
|
| 1155 |
+
padding_mask = padding_mask == 0
|
| 1156 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
| 1157 |
+
:, :, :, :mask_length
|
| 1158 |
+
].masked_fill(padding_mask, min_dtype)
|
| 1159 |
+
|
| 1160 |
+
return causal_mask
|
| 1161 |
+
|
| 1162 |
+
|
| 1163 |
+
@auto_docstring(
|
| 1164 |
+
custom_intro="""
|
| 1165 |
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
| 1166 |
embeddings).
|
| 1167 |
+
"""
|
|
|
|
| 1168 |
)
|
| 1169 |
class GPT2LMHeadModel(GPT2PreTrainedModel, GenerationMixin):
|
| 1170 |
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
| 1218 |
def set_output_embeddings(self, new_embeddings):
|
| 1219 |
self.lm_head = new_embeddings
|
| 1220 |
|
| 1221 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1222 |
def forward(
|
| 1223 |
self,
|
| 1224 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1225 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1226 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1227 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1228 |
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1229 |
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
| 1236 |
output_attentions: Optional[bool] = None,
|
| 1237 |
output_hidden_states: Optional[bool] = None,
|
| 1238 |
return_dict: Optional[bool] = None,
|
| 1239 |
+
**kwargs,
|
| 1240 |
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
| 1241 |
r"""
|
| 1242 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 1243 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 1244 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
| 1245 |
+
sequence tokens in the vocabulary.
|
| 1246 |
+
|
| 1247 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 1248 |
+
`input_ids`.
|
| 1249 |
+
|
| 1250 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1251 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1252 |
+
|
| 1253 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1254 |
+
labels (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
| 1255 |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1256 |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 1257 |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
|
|
|
| 1264 |
input_ids,
|
| 1265 |
past_key_values=past_key_values,
|
| 1266 |
attention_mask=attention_mask,
|
| 1267 |
+
cache_position=cache_position,
|
| 1268 |
token_type_ids=token_type_ids,
|
| 1269 |
position_ids=position_ids,
|
| 1270 |
head_mask=head_mask,
|
|
|
|
| 1287 |
|
| 1288 |
loss = None
|
| 1289 |
if labels is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1290 |
# Flatten the tokens
|
| 1291 |
+
loss = self.loss_function(
|
| 1292 |
+
lm_logits,
|
| 1293 |
+
labels,
|
| 1294 |
+
vocab_size=self.config.vocab_size,
|
| 1295 |
+
**kwargs,
|
| 1296 |
)
|
| 1297 |
|
| 1298 |
if not return_dict:
|
|
|
|
| 1308 |
cross_attentions=transformer_outputs.cross_attentions,
|
| 1309 |
)
|
| 1310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1311 |
|
| 1312 |
+
@auto_docstring(
|
| 1313 |
+
custom_intro="""
|
| 1314 |
+
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
| 1315 |
+
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
| 1316 |
+
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
| 1317 |
+
input sequence).
|
| 1318 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1319 |
)
|
| 1320 |
class GPT2DoubleHeadsModel(GPT2PreTrainedModel, GenerationMixin):
|
| 1321 |
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
| 1325 |
config.num_labels = 1
|
| 1326 |
self.transformer = GPT2Model(config)
|
| 1327 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 1328 |
+
self.multiple_choice_head = GPT2SequenceSummary(config)
|
| 1329 |
|
| 1330 |
# Model parallel
|
| 1331 |
self.model_parallel = False
|
|
|
|
| 1375 |
def set_output_embeddings(self, new_embeddings):
|
| 1376 |
self.lm_head = new_embeddings
|
| 1377 |
|
| 1378 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
| 1379 |
def forward(
|
| 1380 |
self,
|
| 1381 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1382 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1383 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1384 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1385 |
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1386 |
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
| 1396 |
**kwargs,
|
| 1397 |
) -> Union[Tuple, GPT2DoubleHeadsModelOutput]:
|
| 1398 |
r"""
|
| 1399 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 1400 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 1401 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
| 1402 |
+
sequence tokens in the vocabulary.
|
| 1403 |
+
|
| 1404 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 1405 |
+
`input_ids`.
|
| 1406 |
+
|
| 1407 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1408 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1409 |
+
|
| 1410 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1411 |
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
|
| 1412 |
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
|
| 1413 |
1]`.
|
| 1414 |
+
labels (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
| 1415 |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1416 |
`labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to
|
| 1417 |
`-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`
|
|
|
|
| 1419 |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
| 1420 |
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
|
| 1421 |
|
|
|
|
|
|
|
| 1422 |
Example:
|
| 1423 |
|
| 1424 |
```python
|
|
|
|
| 1451 |
transformer_outputs = self.transformer(
|
| 1452 |
input_ids,
|
| 1453 |
past_key_values=past_key_values,
|
| 1454 |
+
cache_position=cache_position,
|
| 1455 |
attention_mask=attention_mask,
|
| 1456 |
token_type_ids=token_type_ids,
|
| 1457 |
position_ids=position_ids,
|
|
|
|
| 1523 |
)
|
| 1524 |
|
| 1525 |
|
| 1526 |
+
@auto_docstring(
|
| 1527 |
+
custom_intro="""
|
| 1528 |
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
| 1529 |
|
| 1530 |
[`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
|
|
| 1535 |
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1536 |
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1537 |
each row of the batch).
|
| 1538 |
+
"""
|
|
|
|
| 1539 |
)
|
| 1540 |
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
| 1541 |
def __init__(self, config):
|
|
|
|
| 1551 |
# Initialize weights and apply final processing
|
| 1552 |
self.post_init()
|
| 1553 |
|
| 1554 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1555 |
def forward(
|
| 1556 |
self,
|
| 1557 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
| 1568 |
return_dict: Optional[bool] = None,
|
| 1569 |
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1570 |
r"""
|
| 1571 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 1572 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 1573 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
| 1574 |
+
sequence tokens in the vocabulary.
|
| 1575 |
+
|
| 1576 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 1577 |
+
`input_ids`.
|
| 1578 |
+
|
| 1579 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1580 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1581 |
+
|
| 1582 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1583 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1584 |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1585 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
|
|
| 1610 |
else:
|
| 1611 |
batch_size, sequence_length = inputs_embeds.shape[:2]
|
| 1612 |
|
| 1613 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1614 |
+
raise ValueError(
|
| 1615 |
+
"Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1616 |
+
)
|
| 1617 |
if self.config.pad_token_id is None:
|
| 1618 |
+
last_non_pad_token = -1
|
| 1619 |
+
elif input_ids is not None:
|
| 1620 |
+
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
|
| 1621 |
+
non_pad_mask = (input_ids != self.config.pad_token_id).to(
|
| 1622 |
+
logits.device, torch.int32
|
| 1623 |
+
)
|
| 1624 |
+
token_indices = torch.arange(
|
| 1625 |
+
input_ids.shape[-1], device=logits.device, dtype=torch.int32
|
| 1626 |
+
)
|
| 1627 |
+
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
|
| 1628 |
else:
|
| 1629 |
+
last_non_pad_token = -1
|
| 1630 |
+
logger.warning_once(
|
| 1631 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1632 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 1633 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1634 |
|
| 1635 |
pooled_logits = logits[
|
| 1636 |
+
torch.arange(batch_size, device=logits.device), last_non_pad_token
|
| 1637 |
]
|
| 1638 |
|
| 1639 |
loss = None
|
|
|
|
| 1675 |
)
|
| 1676 |
|
| 1677 |
|
| 1678 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1679 |
class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
| 1680 |
def __init__(self, config):
|
| 1681 |
super().__init__(config)
|
|
|
|
| 1701 |
# Initialize weights and apply final processing
|
| 1702 |
self.post_init()
|
| 1703 |
|
| 1704 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1705 |
def forward(
|
| 1706 |
self,
|
| 1707 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
| 1718 |
return_dict: Optional[bool] = None,
|
| 1719 |
) -> Union[Tuple, TokenClassifierOutput]:
|
| 1720 |
r"""
|
| 1721 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 1722 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 1723 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
| 1724 |
+
sequence tokens in the vocabulary.
|
| 1725 |
+
|
| 1726 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 1727 |
+
`input_ids`.
|
| 1728 |
+
|
| 1729 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1730 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1731 |
+
|
| 1732 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1733 |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1734 |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1735 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
|
|
| 1775 |
)
|
| 1776 |
|
| 1777 |
|
| 1778 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1779 |
class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
|
| 1780 |
def __init__(self, config):
|
| 1781 |
super().__init__(config)
|
|
|
|
| 1790 |
# Initialize weights and apply final processing
|
| 1791 |
self.post_init()
|
| 1792 |
|
| 1793 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1794 |
def forward(
|
| 1795 |
self,
|
| 1796 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
| 1806 |
return_dict: Optional[bool] = None,
|
| 1807 |
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1808 |
r"""
|
| 1809 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 1810 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 1811 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
| 1812 |
+
sequence tokens in the vocabulary.
|
| 1813 |
+
|
| 1814 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 1815 |
+
`input_ids`.
|
| 1816 |
+
|
| 1817 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1818 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1819 |
+
|
| 1820 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1821 |
"""
|
| 1822 |
return_dict = (
|
| 1823 |
return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
| 1870 |
hidden_states=outputs.hidden_states,
|
| 1871 |
attentions=outputs.attentions,
|
| 1872 |
)
|
| 1873 |
+
|
| 1874 |
+
|
| 1875 |
+
__all__ = [
|
| 1876 |
+
"GPT2DoubleHeadsModel",
|
| 1877 |
+
"GPT2ForQuestionAnswering",
|
| 1878 |
+
"GPT2ForSequenceClassification",
|
| 1879 |
+
"GPT2ForTokenClassification",
|
| 1880 |
+
"GPT2LMHeadModel",
|
| 1881 |
+
"GPT2Model",
|
| 1882 |
+
"GPT2PreTrainedModel",
|
| 1883 |
+
"load_tf_weights_in_gpt2",
|
| 1884 |
+
]
|