create training loop
Browse files- training_loop.py +93 -0
training_loop.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Minimal command:
|
| 3 |
+
python training_loop.py --hub_dir "segments/sidewalk-semantic"
|
| 4 |
+
|
| 5 |
+
Maximal command:
|
| 6 |
+
python training_loop.py --hub_dir "segments/sidewalk-semantic" --batch_size 32 --learning_rate 6e-5 --model_flavor 0 --seed 42 --split train
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import json
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
from pytorch_lightning import Trainer, callbacks, seed_everything
|
| 13 |
+
from pytorch_lightning.loggers import WandbLogger
|
| 14 |
+
|
| 15 |
+
from dataloader import SidewalkSegmentationDataLoader
|
| 16 |
+
from model import SidewalkSegmentationModel
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def main(
|
| 20 |
+
hub_dir: str,
|
| 21 |
+
batch_size: int = 32,
|
| 22 |
+
learning_rate: float = 6e-5,
|
| 23 |
+
model_flavor: int = 0,
|
| 24 |
+
seed: int = 42,
|
| 25 |
+
split: str = "train",
|
| 26 |
+
):
|
| 27 |
+
seed_everything(seed)
|
| 28 |
+
logger = WandbLogger(project="sidewalk-segmentation")
|
| 29 |
+
gpu_value = 1 if torch.cuda.is_available() else 0
|
| 30 |
+
|
| 31 |
+
id2label_file = json.load(open("id2label.json", "r"))
|
| 32 |
+
id2label = {int(k): v for k, v in id2label_file.items()}
|
| 33 |
+
num_labels = len(id2label)
|
| 34 |
+
|
| 35 |
+
model = SidewalkSegmentationModel(
|
| 36 |
+
num_labels=num_labels,
|
| 37 |
+
id2label=id2label,
|
| 38 |
+
model_flavor=model_flavor,
|
| 39 |
+
learning_rate=learning_rate,
|
| 40 |
+
)
|
| 41 |
+
data_module = SidewalkSegmentationDataLoader(
|
| 42 |
+
hub_dir=hub_dir,
|
| 43 |
+
batch_size=batch_size,
|
| 44 |
+
split=split,
|
| 45 |
+
)
|
| 46 |
+
data_module.setup()
|
| 47 |
+
|
| 48 |
+
checkpoint_callback = callbacks.ModelCheckpoint(
|
| 49 |
+
dirpath="checkpoints",
|
| 50 |
+
save_top_k=1,
|
| 51 |
+
verbose=True,
|
| 52 |
+
monitor="val_mean_iou",
|
| 53 |
+
mode="max",
|
| 54 |
+
)
|
| 55 |
+
early_stopping_callback = callbacks.EarlyStopping(
|
| 56 |
+
monitor="val_mean_iou",
|
| 57 |
+
patience=5,
|
| 58 |
+
verbose=True,
|
| 59 |
+
mode="max",
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
trainer = Trainer(
|
| 63 |
+
max_epochs=200,
|
| 64 |
+
progress_bar_refresh_rate=10,
|
| 65 |
+
gpus=gpu_value,
|
| 66 |
+
logger=logger,
|
| 67 |
+
callbacks=[checkpoint_callback, early_stopping_callback],
|
| 68 |
+
deterministic=False,
|
| 69 |
+
)
|
| 70 |
+
trainer.fit(model, data_module)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
if __name__ == "__main__":
|
| 74 |
+
import argparse
|
| 75 |
+
|
| 76 |
+
parser = argparse.ArgumentParser()
|
| 77 |
+
parser.add_argument("--hub_dir", type=str, required=True)
|
| 78 |
+
parser.add_argument("--batch_size", type=int, default=32)
|
| 79 |
+
parser.add_argument("--learning_rate", type=float, default=6e-5)
|
| 80 |
+
parser.add_argument("--model_flavor", type=int, default=0)
|
| 81 |
+
parser.add_argument("--seed", type=int, default=42)
|
| 82 |
+
parser.add_argument("--split", type=str, default="train")
|
| 83 |
+
args = parser.parse_args()
|
| 84 |
+
|
| 85 |
+
main(
|
| 86 |
+
hub_dir=args.hub_dir,
|
| 87 |
+
batch_size=args.batch_size,
|
| 88 |
+
learning_rate=args.learning_rate,
|
| 89 |
+
model_flavor=args.model_flavor,
|
| 90 |
+
seed=args.seed,
|
| 91 |
+
split=args.split,
|
| 92 |
+
)
|
| 93 |
+
|