aws-kh
commited on
Commit
·
9f6ae3f
1
Parent(s):
54f7e6d
Added model files.
Browse files- .gitattributes +1 -0
- README.md +150 -3
- config.json +34 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,150 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
inference: false
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# MistralLite-AWQ Model
|
| 7 |
+
|
| 8 |
+
MistralLite-AWQ is a version of the [MistralLite](https://huggingface.co/amazon/MistralLite) model that was
|
| 9 |
+
quantized using the AWQ method developed by [Lin et al. (2023)](https://arxiv.org/abs/2306.00978).
|
| 10 |
+
The MistralLite-AWQ models are approximately **70% smaller** than those of MistralLite whilst maintaining comparable performance.
|
| 11 |
+
|
| 12 |
+
Please refer to the [original MistralLite model card](https://huggingface.co/amazon/MistralLite) for details about the model
|
| 13 |
+
preparation and training processes.
|
| 14 |
+
|
| 15 |
+
## MistralLite-AWQ Variants
|
| 16 |
+
|
| 17 |
+
| Branch | Approx. Model Size | `q_group_size` | `w_bit` | `version` |
|
| 18 |
+
|--------|---:|---------------:|--------:|-----------|
|
| 19 |
+
| [main](https://huggingface.co/amazon/MistralLite-AWQ/tree/main) | 3.9 GB | 128 | 4 | GEMM |
|
| 20 |
+
| [MistralLite-AWQ-64g-4b-GEMM](https://huggingface.co/amazon/MistralLite-AWQ/tree/MistralLite-AWQ-64g-4b-GEMM) | 4.0 GB | 64 | 4 | GEMM |
|
| 21 |
+
| [MistralLite-AWQ-32g-4b-GEMM](https://huggingface.co/amazon/MistralLite-AWQ/tree/MistralLite-AWQ-32g-4b-GEMM) | 4.3 GB | 32 | 4 | GEMM |
|
| 22 |
+
|
| 23 |
+
## Dependencies
|
| 24 |
+
- [`autoawq==0.2.5`](https://pypi.org/project/autoawq/0.2.5/) – [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) was used to quantize the MistralLite model.
|
| 25 |
+
- [`vllm==0.4.2`](https://pypi.org/project/vllm/0.4.2/) – [vLLM](https://github.com/vllm-project/vllm) was used to host models for benchmarking.
|
| 26 |
+
|
| 27 |
+
## Evaluations
|
| 28 |
+
|
| 29 |
+
### Long Context
|
| 30 |
+
|
| 31 |
+
The following benchmark results are shown as _accuracy_ (%) values, unless stated otherwise.
|
| 32 |
+
|
| 33 |
+
#### Topic Retrieval
|
| 34 |
+
|
| 35 |
+
See https://lmsys.org/blog/2023-06-29-longchat/
|
| 36 |
+
|
| 37 |
+
| Model Name | n_topics=05 | n_topics=10 | n_topics=15 | n_topics=20 | n_topics=25 |
|
| 38 |
+
|:---------------------------------------------------|--------------:|--------------:|--------------:|--------------:|--------------:|
|
| 39 |
+
| _n_tokens_ (approx.) = | _3048_ | _5966_ | _8903_ | _11832_ | _14757_ |
|
| 40 |
+
| MistralLite | 100 | 100 | 100 | 100 | 98 |
|
| 41 |
+
| **MistralLite-AWQ** | **100** | **100** | **100**| **100** | **98** |
|
| 42 |
+
| **MistralLite-AWQ-64g-4b-GEMM** | **100** | **100** | **100**| **100** | **98** |
|
| 43 |
+
| **MistralLite-AWQ-32g-4b-GEMM** | **100** | **100** | **100**| **100** | **98** |
|
| 44 |
+
| Mistral-7B-Instruct-v0.1 | 96 | 52 | 2 | 0 | 0 |
|
| 45 |
+
| Mistral-7B-Instruct-v0.2 | 100 | 100 | 100 | 100 | 100 |
|
| 46 |
+
| Mixtral-8x7B-v0.1 | 0 | 0 | 0 | 0 | 0 |
|
| 47 |
+
| Mixtral-8x7B-Instruct-v0.1 | 100 | 100 | 100 | 100 | 100 |
|
| 48 |
+
|
| 49 |
+
#### [Line Retrieval](https://lmsys.org/blog/2023-06-29-longchat/#longeval-results)
|
| 50 |
+
|
| 51 |
+
See https://lmsys.org/blog/2023-06-29-longchat/#longeval-results
|
| 52 |
+
|
| 53 |
+
| Model Name | n_lines=200 | n_lines=300 | n_lines=400 | n_lines=500 | n_lines=600 | n_lines=680 |
|
| 54 |
+
|:----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:|
|
| 55 |
+
| _n_tokens_ (approx.) = | _4317_ | _6415_ | _8510_ | _10610_ | _12698_ | _14373_ |
|
| 56 |
+
| MistralLite | 100 | 94 | 86 | 82 | 76 | 66 |
|
| 57 |
+
| **MistralLite-AWQ** | **96**| **94**| **88** | **80** | **70**| **62** |
|
| 58 |
+
| **MistralLite-AWQ-64g-4b-GEMM** | **96**| **96**| **90** | **70** | **72**| **60** |
|
| 59 |
+
| **MistralLite-AWQ-32g-4b-GEMM** | **98**| **96**| **84** | **76** | **70**| **62** |
|
| 60 |
+
| Mistral-7B-Instruct-v0.1 | 96 | 56 | 38 | 36 | 30 | 30 |
|
| 61 |
+
| Mistral-7B-Instruct-v0.2 | 100 | 100 | 96 | 98 | 96 | 84 |
|
| 62 |
+
| Mixtral-8x7B-v0.1 | 54 | 38 | 56 | 66 | 62 | 38 |
|
| 63 |
+
| Mixtral-8x7B-Instruct-v0.1 | 100 | 100 | 100 | 100 | 100 | 100 |
|
| 64 |
+
|
| 65 |
+
#### Pass Key Retrieval
|
| 66 |
+
|
| 67 |
+
See https://github.com/epfml/landmark-attention/blob/main/llama/run_test.py#L101
|
| 68 |
+
|
| 69 |
+
| Model Name | n_garbage=12000 | n_garbage=20000 | n_garbage=31000 | n_garbage=38000 | n_garbage=45000 | n_garbage=60000 |
|
| 70 |
+
|:----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:|
|
| 71 |
+
| _n_tokens_ (approx.) = | _3272_ | _5405_ | _8338_ | _10205_ | _12071_ | _16072_ |
|
| 72 |
+
| MistralLite | 100 | 100 | 100 | 100 | 100 | 100|
|
| 73 |
+
| **MistralLite-AWQ** | **100** | **100**| **100**| **100** | **100**| **100**|
|
| 74 |
+
| **MistralLite-AWQ-64g-4b-GEMM** | **100** | **100**| **100**| **100** | **100**| **100**|
|
| 75 |
+
| **MistralLite-AWQ-32g-4b-GEMM** | **100** | **100**| **100**| **100** | **100**| **100**|
|
| 76 |
+
| Mistral-7B-Instruct-v0.1 | 100 | 50 | 30 | 20 | 10 | 10 |
|
| 77 |
+
| Mistral-7B-Instruct-v0.2 | 100 | 100 | 100 | 100 | 100 | 100 |
|
| 78 |
+
| Mixtral-8x7B-v0.1 | 100 | 100 | 100 | 100 | 100 | 100 |
|
| 79 |
+
| Mixtral-8x7B-Instruct-v0.1 | 100 | 100 | 100 | 90 | 100 | 100 |
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
#### QuALITY (Question Answering with Long Input Texts, Yes!
|
| 83 |
+
|
| 84 |
+
See https://nyu-mll.github.io/quality/
|
| 85 |
+
|
| 86 |
+
|Model Name| Test set Accuracy | Hard subset Accuracy|
|
| 87 |
+
|:----------|-------------:|-------------:|
|
| 88 |
+
| MistralLite | 56.8 | 74.5 |
|
| 89 |
+
| **MistralLite-AWQ** | **55.3** | **71.8** |
|
| 90 |
+
| **MistralLite-AWQ-64g-4b-GEMM** | **55.2** | **72.9** |
|
| 91 |
+
| **MistralLite-AWQ-32g-4b-GEMM** | **56.6** | **72.8** |
|
| 92 |
+
| Mistral-7B-Instruct-v0.1 | 45.2 | 58.9 |
|
| 93 |
+
| Mistral-7B-Instruct-v0.2 | 55.5 | 74 |
|
| 94 |
+
| Mixtral-8x7B-v0.1 | 75 | 74.1 |
|
| 95 |
+
| Mixtral-8x7B-Instruct-v0.1 | 68.7 | 83.3 |
|
| 96 |
+
|
| 97 |
+
## Usage
|
| 98 |
+
|
| 99 |
+
## Inference via vLLM HTTP Host
|
| 100 |
+
|
| 101 |
+
### Launch Host
|
| 102 |
+
```bash
|
| 103 |
+
python -m vllm.entrypoints.openai.api_server \
|
| 104 |
+
--model amazon/MistralLite-AWQ \
|
| 105 |
+
--quantization awq
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
### Query Host
|
| 109 |
+
```bash
|
| 110 |
+
curl -X POST http://localhost:8000/v1/completions \
|
| 111 |
+
-H "Content-Type: application/json" \
|
| 112 |
+
-d '{ "model": "amazon/MistralLite-AWQ",
|
| 113 |
+
"prompt": "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
|
| 114 |
+
"temperature": 0,
|
| 115 |
+
"echo": false
|
| 116 |
+
}'
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
## Inference via [vLLM Offline Inference](https://docs.vllm.ai/en/latest/getting_started/examples/offline_inference.html)
|
| 120 |
+
```python
|
| 121 |
+
from vllm import LLM, SamplingParams
|
| 122 |
+
|
| 123 |
+
prompts = [
|
| 124 |
+
"<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
|
| 125 |
+
]
|
| 126 |
+
sampling_params = SamplingParams(temperature=0, max_tokens=100)
|
| 127 |
+
|
| 128 |
+
llm = LLM(model="amazon/MistralLite-AWQ")
|
| 129 |
+
|
| 130 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 131 |
+
|
| 132 |
+
# Print the outputs.
|
| 133 |
+
for output in outputs:
|
| 134 |
+
prompt = output.prompt
|
| 135 |
+
generated_text = output.outputs[0].text
|
| 136 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
| 137 |
+
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
## License
|
| 141 |
+
|
| 142 |
+
Apache 2.0
|
| 143 |
+
|
| 144 |
+
## Limitations
|
| 145 |
+
|
| 146 |
+
Before using the MistralLite-AWQ model, it is important to perform your own
|
| 147 |
+
independent assessment, and take measures to ensure that your use would comply
|
| 148 |
+
with your own specific quality control practices and standards, and that your
|
| 149 |
+
use would comply with the local rules, laws, regulations, licenses and terms
|
| 150 |
+
that apply to you, and your content.
|
config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/home/ubuntu/.cache/huggingface/hub/models--amazon--MistralLite/snapshots/a6083667f229a8b1503c816c863fd21be053871d",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MistralForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 1,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 4096,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 14336,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"model_type": "mistral",
|
| 15 |
+
"num_attention_heads": 32,
|
| 16 |
+
"num_hidden_layers": 32,
|
| 17 |
+
"num_key_value_heads": 8,
|
| 18 |
+
"quantization_config": {
|
| 19 |
+
"bits": 4,
|
| 20 |
+
"group_size": 128,
|
| 21 |
+
"modules_to_not_convert": null,
|
| 22 |
+
"quant_method": "awq",
|
| 23 |
+
"version": "gemm",
|
| 24 |
+
"zero_point": true
|
| 25 |
+
},
|
| 26 |
+
"rms_norm_eps": 1e-05,
|
| 27 |
+
"rope_theta": 1000000,
|
| 28 |
+
"sliding_window": null,
|
| 29 |
+
"tie_word_embeddings": false,
|
| 30 |
+
"torch_dtype": "float16",
|
| 31 |
+
"transformers_version": "4.40.2",
|
| 32 |
+
"use_cache": true,
|
| 33 |
+
"vocab_size": 32003
|
| 34 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": 2,
|
| 6 |
+
"transformers_version": "4.40.2"
|
| 7 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95960bb0b19cd967e4ef0a1397ec885e6123bbd63b5934a992f253612e42dc1d
|
| 3 |
+
size 4150929384
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<unk>",
|
| 4 |
+
"<s>",
|
| 5 |
+
"</s>",
|
| 6 |
+
"<|assistant|>",
|
| 7 |
+
"<|prompter|>"
|
| 8 |
+
],
|
| 9 |
+
"bos_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"pad_token": {
|
| 24 |
+
"content": "[PAD]",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": true,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "<unk>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"32000": {
|
| 30 |
+
"content": "[PAD]",
|
| 31 |
+
"lstrip": true,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": true,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"32001": {
|
| 38 |
+
"content": "<|assistant|>",
|
| 39 |
+
"lstrip": true,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": true,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"32002": {
|
| 46 |
+
"content": "<|prompter|>",
|
| 47 |
+
"lstrip": true,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": true,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
}
|
| 53 |
+
},
|
| 54 |
+
"additional_special_tokens": [
|
| 55 |
+
"<unk>",
|
| 56 |
+
"<s>",
|
| 57 |
+
"</s>",
|
| 58 |
+
"<|assistant|>",
|
| 59 |
+
"<|prompter|>"
|
| 60 |
+
],
|
| 61 |
+
"bos_token": "<s>",
|
| 62 |
+
"clean_up_tokenization_spaces": false,
|
| 63 |
+
"eos_token": "</s>",
|
| 64 |
+
"legacy": true,
|
| 65 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 66 |
+
"pad_token": "[PAD]",
|
| 67 |
+
"sp_model_kwargs": {},
|
| 68 |
+
"spaces_between_special_tokens": false,
|
| 69 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 70 |
+
"unk_token": "<unk>",
|
| 71 |
+
"use_default_system_prompt": true
|
| 72 |
+
}
|