Running VibeThinker-1.5B on android Samsung Tablet — Edge AI in Action

#3
by Javedalam - opened

Model: VibeThinker-1.5B (Qwen 2.5 Math finetune)

Quantization: 4-bit GGUF

Inference engine: llama-server under Termux

Temperature: 0.2

System prompt:

“You are a concise solver. Always stop after giving a single line beginning with ‘Final Answer:’. Never explain or continue reasoning.”

With this setup, the model successfully solved the differential equation

y'' - y = e^x,\quad y(0)=0,\quad y'(0)=1,

y(x)=\tfrac14e^{x}-\tfrac14e^{-x}+\tfrac12x e^{x}.

At a generation rate of roughly 3 tokens per second, VibeThinker-1.5B handled both the mathematical reasoning and logical structure smoothly. For a model under 1.2 billion parameters, this performance is remarkable. It demonstrates that, with improved quantization and refined prompting, Edge AI on mobile devices has become a practical reality—bringing private, on-device reasoning to everyday hardware.

Screenshot_20251112_171407_Chrome
Screenshot_20251112_171526_Chrome
Screenshot_20251112_171717_Chrome

Javedalam changed discussion title from Running VibeThinker-1.5B on a Samsung Tablet — Edge AI in Action to Running VibeThinker-1.5B on an android Samsung Tablet — Edge AI in Action
Javedalam changed discussion title from Running VibeThinker-1.5B on an android Samsung Tablet — Edge AI in Action to Running VibeThinker-1.5B on android Samsung Tablet — Edge AI in Action

Hi, what's the chat UI do you use here?

Hi, what's the chat UI do you use here?

Official llama.cpp web ui

here is Dockerfile for it:

FROM archlinux:latest

ENV DEBIAN_FRONTEND=noninteractive

# passed from space environment
ARG MODEL_ID="unsloth/gemma-3-270m-it-GGUF"
ARG QUANT="Q8_0"
ARG SERVED_NAME="Gemma 270m"
ARG PARALLEL=4
ARG CTX_SIZE="4096"
ARG EMBEDDING_ONLY=0
ARG RERANK_ONLY=0

# llama.cpp env configs
ENV LLAMA_ARG_HF_REPO="${MODEL_ID}"
ENV LLAMA_ARG_CTX_SIZE="${CTX_SIZE}"
ENV LLAMA_ARG_BATCH=512
ENV LLAMA_ARG_N_PARALLEL="${PARALLEL}"
ENV LLAMA_ARG_FLASH_ATTN=on
# ENV LLAMA_ARG_CACHE_TYPE_K="q8_0"
# ENV LLAMA_ARG_CACHE_TYPE_V="q4_1"
ENV LLAMA_ARG_MLOCK=1
ENV LLAMA_ARG_N_GPU_LAYERS=0
ENV LLAMA_ARG_HOST="0.0.0.0"
ENV LLAMA_ARG_PORT=7860
ENV LLAMA_ARG_ALIAS="${SERVED_NAME}"
ENV LLAMA_ARG_EMBEDDINGS=${EMBEDDING_ONLY}
ENV LLAMA_ARG_RERANKING=${RERANK_ONLY}
ENV LLAMA_ARG_ENDPOINT_METRICS=1

RUN pacman -Syu --noconfirm --overwrite '*'
RUN pacman -S base-devel git git-lfs cmake curl openblas openblas64 blas64-openblas python gcc-libs glibc --noconfirm --overwrite '*'

RUN mkdir -p /app && mkdir -p /.cache
# cache dir for llama.cpp to download models
RUN chmod -R 777 /.cache

WORKDIR /app
RUN git clone --depth 1 --single-branch --branch master https://github.com/ggml-org/llama.cpp.git
# RUN git clone https://github.com/ikawrakow/ik_llama.cpp.git llama.cpp
WORKDIR /app/llama.cpp
RUN cmake -B build \
          -DGGML_LTO=ON \
          -DLLAMA_CURL=ON \
          -DLLAMA_BUILD_SERVER=ON \
          -DLLAMA_BUILD_EXAMPLES=ON \
          -DGGML_ALL_WARNINGS=OFF \
          -DGGML_ALL_WARNINGS_3RD_PARTY=OFF \
          -DGGML_BLAS=ON \
          -DGGML_BLAS_VENDOR=OpenBLAS \
          -DGGML_NATIVE=ON \
          -DGGML_LLAMAFILE=ON \
          -Wno-dev \
          -DCMAKE_BUILD_TYPE=Release
RUN cmake --build build --config Release --target llama-server -j $(nproc)

WORKDIR /app

EXPOSE 7860

CMD ["/app/llama.cpp/build/bin/llama-server", "--verbose-prompt", "--prio", "3"]

Really impressive work getting VibeThinker-1.5B running so smoothly on a Samsung tablet. Solving a differential equation correctly at ~3 tokens/sec on 4-bit GGUF shows how far edge AI has come. This is a great example of practical, private on-device reasoning, excited to see where mobile-first inference goes next.

Sign up or log in to comment