|
|
|
|
|
""" |
|
|
Better Sampling for BitTransformerLM |
|
|
""" |
|
|
|
|
|
import sys |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
|
|
|
sys.path.append('/data') |
|
|
sys.path.append('/data/BitTransformerLM') |
|
|
|
|
|
from bit_transformer import BitTransformerLM, text_to_bits, bits_to_text |
|
|
|
|
|
def load_model(): |
|
|
model = BitTransformerLM( |
|
|
d_model=512, nhead=16, num_layers=8, dim_feedforward=1024, |
|
|
max_seq_len=512, reversible=True, use_checkpoint=False, |
|
|
use_autocast=False, use_act=True, act_threshold=0.9, |
|
|
lambda_K=0.05, lambda_C=0.05, lambda_S=0.05 |
|
|
) |
|
|
|
|
|
checkpoint = torch.load('/data/BitTransformerLM/checkpoints/checkpoint_best.pt', map_location='cpu') |
|
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
|
model.eval() |
|
|
|
|
|
return model |
|
|
|
|
|
def smart_generate(model, prompt, max_chars=5): |
|
|
"""Generate with better sampling strategies.""" |
|
|
print(f"\nπ― Smart generating from: '{prompt}'") |
|
|
|
|
|
input_bits = text_to_bits(prompt) |
|
|
generated_bits = input_bits.copy() |
|
|
|
|
|
with torch.no_grad(): |
|
|
for char_idx in range(max_chars): |
|
|
|
|
|
char_bits = [] |
|
|
|
|
|
for bit_idx in range(9): |
|
|
|
|
|
context = generated_bits + char_bits |
|
|
context = context[-300:] if len(context) > 300 else context |
|
|
context_tensor = torch.tensor(context, dtype=torch.long).unsqueeze(0) |
|
|
|
|
|
logits, telemetry = model(context_tensor) |
|
|
next_bit_logits = logits[0, -1, :] |
|
|
|
|
|
|
|
|
if bit_idx < 8: |
|
|
|
|
|
temperature = 0.8 |
|
|
next_bit_logits = next_bit_logits / temperature |
|
|
|
|
|
|
|
|
k = 2 |
|
|
top_k_logits, top_k_indices = torch.topk(next_bit_logits, k) |
|
|
probs = F.softmax(top_k_logits, dim=-1) |
|
|
selected_idx = torch.multinomial(probs, 1).item() |
|
|
next_bit = top_k_indices[selected_idx].item() |
|
|
else: |
|
|
|
|
|
data_bits = char_bits[:8] |
|
|
expected_parity = sum(data_bits) % 2 |
|
|
next_bit = expected_parity |
|
|
|
|
|
char_bits.append(next_bit) |
|
|
|
|
|
|
|
|
generated_bits.extend(char_bits) |
|
|
|
|
|
|
|
|
try: |
|
|
new_char_bits = char_bits |
|
|
|
|
|
data_bits = new_char_bits[:8] |
|
|
byte_val = sum(bit * (2**(7-i)) for i, bit in enumerate(data_bits)) |
|
|
|
|
|
if 32 <= byte_val <= 126: |
|
|
char = chr(byte_val) |
|
|
print(f" Char {char_idx+1}: '{char}' (byte={byte_val})") |
|
|
|
|
|
|
|
|
if char in '.!?\n': |
|
|
break |
|
|
else: |
|
|
print(f" Char {char_idx+1}: Non-printable (byte={byte_val})") |
|
|
|
|
|
except Exception as e: |
|
|
print(f" Char {char_idx+1}: Decode error: {e}") |
|
|
|
|
|
|
|
|
generated_only = generated_bits[len(input_bits):] |
|
|
try: |
|
|
final_text = bits_to_text(generated_only) |
|
|
print(f"β¨ Result: '{prompt}' + '{final_text}'") |
|
|
return final_text |
|
|
except Exception as e: |
|
|
print(f"β Final decode failed: {e}") |
|
|
|
|
|
|
|
|
manual_result = "" |
|
|
for i in range(0, len(generated_only), 9): |
|
|
if i + 8 < len(generated_only): |
|
|
char_bits = generated_only[i:i+8] |
|
|
byte_val = sum(bit * (2**(7-j)) for j, bit in enumerate(char_bits)) |
|
|
if 32 <= byte_val <= 126: |
|
|
manual_result += chr(byte_val) |
|
|
else: |
|
|
manual_result += '?' |
|
|
|
|
|
print(f"π§ Manual decode: '{prompt}' + '{manual_result}'") |
|
|
return manual_result |
|
|
|
|
|
def main(): |
|
|
print("π SMART BITRANSFORMERLM GENERATION") |
|
|
print("=" * 40) |
|
|
|
|
|
model = load_model() |
|
|
print("β
Model loaded!") |
|
|
|
|
|
|
|
|
prompts = [ |
|
|
"Hello", |
|
|
"Hi", |
|
|
"A", |
|
|
"The cat", |
|
|
"I am", |
|
|
"Yes", |
|
|
"No" |
|
|
] |
|
|
|
|
|
for prompt in prompts: |
|
|
result = smart_generate(model, prompt, max_chars=4) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |