File size: 13,186 Bytes
72bc506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/usr/bin/env python3
"""
Enhanced BitTransformerLM Generation Testing
=============================================

Test the promising generation improvements:
1. Autoregressive generation with automatic parity correction
2. Longer sequence generation (50, 100, 200+ characters)
3. Optimized diffusion parameters (50+ steps)
4. Direct comparison between generation methods

Goal: See if we can get from "barely-contextual gibberish" to actual language!
"""

import sys
import torch
import torch.nn.functional as F
from datetime import datetime

sys.path.append('/data')
sys.path.append('/data/BitTransformerLM')

from bit_transformer import (
    BitTransformerLM,
    text_to_bits,
    bits_to_text,
    diffusion_inference,
    set_dropout,
    enforce_parity
)

def load_full_attention_model():
    """Load the full attention BitTransformerLM model."""
    print("πŸš€ Loading Full Attention BitTransformerLM for enhanced generation testing...")
    
    model = BitTransformerLM(
        d_model=512, nhead=16, num_layers=8, dim_feedforward=1024,
        max_seq_len=512, reversible=True, use_checkpoint=False,
        use_autocast=False, use_act=True, act_threshold=0.9,
        lambda_K=0.05, lambda_C=0.05, lambda_S=0.05,
        chunk_size=None, overlap=0, full_attn_logging=True
    )
    
    checkpoint_path = '/data/BitTransformerLM/checkpoints/checkpoint_best.pt'
    checkpoint = torch.load(checkpoint_path, map_location='cpu')
    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval()
    set_dropout(model, 0.0)
    
    epoch = checkpoint.get('epoch', 'unknown')
    loss = checkpoint.get('loss', 'unknown')
    print(f"βœ… Model loaded! Epoch: {epoch}, Loss: {loss}")
    
    return model

def autoregressive_generate_with_parity_correction(model, prompt, max_new_chars=20, temperature=0.7):
    """
    Autoregressive generation with automatic parity correction.
    This should solve the parity check failure issue that blocked autoregressive evaluation.
    """
    print(f"\nπŸ”„ Autoregressive generation with parity correction:")
    print(f"   Prompt: '{prompt}' β†’ generating {max_new_chars} characters...")
    
    # Convert prompt to bits
    input_bits = text_to_bits(prompt)
    generated_bits = input_bits.copy()
    
    with torch.no_grad():
        for char_idx in range(max_new_chars):
            char_bits = []
            
            # Generate 8 data bits + 1 parity bit per character
            for bit_idx in range(9):
                # Use last 400 bits as context
                context = generated_bits + char_bits
                context = context[-400:] if len(context) > 400 else context
                context_tensor = torch.tensor(context, dtype=torch.long).unsqueeze(0)
                
                # Get next bit prediction
                logits, telemetry = model(context_tensor, causal=True)
                next_bit_logits = logits[0, -1, :]
                
                if bit_idx < 8:  # Data bits
                    # Apply temperature for controlled randomness
                    if temperature > 0:
                        next_bit_logits = next_bit_logits / temperature
                        probs = F.softmax(next_bit_logits, dim=-1)
                        next_bit = torch.multinomial(probs, 1).item()
                    else:
                        next_bit = torch.argmax(next_bit_logits).item()
                else:  # Parity bit - calculate correct parity
                    data_bits = char_bits[:8]
                    expected_parity = sum(data_bits) % 2
                    next_bit = expected_parity
                
                char_bits.append(next_bit)
            
            # Add character to generated sequence
            generated_bits.extend(char_bits)
        
        # Extract only the new bits (excluding prompt)
        new_bits = generated_bits[len(input_bits):]
        
        # Apply additional parity correction if needed
        new_bits_tensor = torch.tensor(new_bits, dtype=torch.long)
        corrected_bits_tensor, parity_corrections = enforce_parity(new_bits_tensor)
        corrected_bits = corrected_bits_tensor.tolist()
        
        try:
            # Decode new text
            decoded_text = bits_to_text(corrected_bits)
            full_result = prompt + decoded_text
            print(f"   βœ… SUCCESS: '{full_result}'")
            return {
                'success': True,
                'full_text': full_result,
                'new_text': decoded_text,
                'bits_generated': len(new_bits),
                'parity_corrections': parity_corrections
            }
        except Exception as e:
            print(f"   ❌ DECODE FAILED: {e}")
            return {
                'success': False,
                'error': str(e),
                'bits_generated': len(new_bits)
            }

def long_diffusion_generation(model, prompt, target_chars, steps=50):
    """
    Generate longer sequences with optimized diffusion parameters.
    """
    print(f"\n🌊 Long diffusion generation:")
    print(f"   Prompt: '{prompt}' β†’ generating {target_chars} characters with {steps} steps...")
    
    try:
        # Generate longer continuation
        continuation_bits = target_chars * 9  # 9 bits per character
        generated_bits = diffusion_inference(
            model,
            length=continuation_bits,
            steps=steps,
            batch_size=1,
            init_bits=None,
            schedule="cosine"
        )
        
        # Decode result
        continuation_bits_list = generated_bits.squeeze().tolist()
        continuation_text = bits_to_text(continuation_bits_list)
        
        full_result = prompt + continuation_text
        print(f"   βœ… SUCCESS: '{full_result}'")
        
        return {
            'success': True,
            'full_text': full_result,
            'new_text': continuation_text,
            'bits_generated': len(continuation_bits_list),
            'diffusion_steps': steps
        }
        
    except Exception as e:
        print(f"   ❌ FAILED: {e}")
        return {
            'success': False,
            'error': str(e),
            'diffusion_steps': steps
        }

def test_length_scaling():
    """Test if longer generations produce more coherent results."""
    print("\nπŸ“ === LENGTH SCALING TESTS ===")
    print("Testing if longer generations show improved coherence...")
    
    model = load_full_attention_model()
    test_prompts = ["Hello", "The weather today", "I think that"]
    target_lengths = [10, 25, 50]
    
    results = []
    
    for prompt in test_prompts:
        for length in target_lengths:
            print(f"\n--- Testing '{prompt}' β†’ {length} chars ---")
            
            # Test autoregressive
            auto_result = autoregressive_generate_with_parity_correction(
                model, prompt, max_new_chars=length, temperature=0.6
            )
            
            # Test diffusion with high steps
            diff_result = long_diffusion_generation(
                model, prompt, target_chars=length, steps=50
            )
            
            results.append({
                'prompt': prompt,
                'target_length': length,
                'autoregressive': auto_result,
                'diffusion': diff_result
            })
    
    return results

def test_parameter_optimization():
    """Test different generation parameters for quality."""
    print("\nβš™οΈ  === PARAMETER OPTIMIZATION TESTS ===")
    print("Testing different temperatures and diffusion steps...")
    
    model = load_full_attention_model()
    prompt = "Hello world"
    
    results = []
    
    # Test different temperatures for autoregressive
    print("\n🌑️  Testing autoregressive temperatures:")
    for temp in [0.1, 0.5, 0.8, 1.0, 1.2]:
        print(f"\n--- Temperature {temp} ---")
        result = autoregressive_generate_with_parity_correction(
            model, prompt, max_new_chars=20, temperature=temp
        )
        results.append({
            'method': 'autoregressive',
            'temperature': temp,
            'result': result
        })
    
    # Test different diffusion steps
    print("\n🌊 Testing diffusion steps:")
    for steps in [10, 25, 50, 100]:
        print(f"\n--- {steps} steps ---")
        result = long_diffusion_generation(
            model, prompt, target_chars=20, steps=steps
        )
        results.append({
            'method': 'diffusion',
            'steps': steps,
            'result': result
        })
    
    return results

def test_coherence_prompts():
    """Test with prompts that should elicit more coherent responses."""
    print("\n🎯 === COHERENCE PROMPTS TESTS ===")
    print("Testing prompts designed to elicit coherent language patterns...")
    
    model = load_full_attention_model()
    
    # Prompts that might elicit more structured responses
    coherence_prompts = [
        "Once upon a time",
        "The quick brown fox",
        "In the beginning",
        "Python code to print hello:",
        "def main():",
        "SELECT * FROM",
        "Today is a beautiful",
        "My name is",
        "The answer is",
        "import torch"
    ]
    
    results = []
    
    for prompt in coherence_prompts:
        print(f"\n--- Testing coherence with: '{prompt}' ---")
        
        # Test both methods with longer generation
        auto_result = autoregressive_generate_with_parity_correction(
            model, prompt, max_new_chars=30, temperature=0.7
        )
        
        diff_result = long_diffusion_generation(
            model, prompt, target_chars=30, steps=75
        )
        
        results.append({
            'prompt': prompt,
            'autoregressive': auto_result,
            'diffusion': diff_result
        })
        
        # Quick analysis
        if auto_result.get('success'):
            auto_text = auto_result.get('new_text', '')
            if any(word in auto_text.lower() for word in ['the', 'and', 'is', 'in', 'to', 'a']):
                print(f"   πŸŽ‰ Autoregressive contains common words!")
        
        if diff_result.get('success'):
            diff_text = diff_result.get('new_text', '')
            if any(word in diff_text.lower() for word in ['the', 'and', 'is', 'in', 'to', 'a']):
                print(f"   πŸŽ‰ Diffusion contains common words!")
    
    return results

def main():
    """Run all enhanced generation tests."""
    print("πŸš€ ENHANCED BITRANSFORMERLM GENERATION TESTING")
    print("=" * 60)
    print("Testing potential fixes:")
    print("1. Autoregressive with parity correction")  
    print("2. Longer sequence generation")
    print("3. Optimized generation parameters")
    print("4. Coherence-focused prompts")
    print("=" * 60)
    
    # Run all tests
    length_results = test_length_scaling()
    param_results = test_parameter_optimization()
    coherence_results = test_coherence_prompts()
    
    # Summary analysis
    print("\n🎯 === OVERALL ANALYSIS ===")
    
    # Count successes
    total_auto = len([r for results in [length_results, coherence_results] 
                     for r in results if r.get('autoregressive', {}).get('success')])
    total_diff = len([r for results in [length_results, coherence_results]
                     for r in results if r.get('diffusion', {}).get('success')])
    
    print(f"Autoregressive success rate: {total_auto}/24")
    print(f"Diffusion success rate: {total_diff}/24")
    
    # Look for promising outputs
    print("\nπŸ” Looking for signs of linguistic improvement...")
    
    all_results = length_results + coherence_results
    promising_outputs = []
    
    for result in all_results:
        for method in ['autoregressive', 'diffusion']:
            if result.get(method, {}).get('success'):
                text = result[method].get('new_text', '')
                # Check for word-like patterns
                if len(text) > 10 and any(c.isalpha() for c in text):
                    words = text.split()
                    if any(len(word) > 2 and word.isalpha() for word in words):
                        promising_outputs.append({
                            'prompt': result['prompt'],
                            'method': method,
                            'text': text
                        })
    
    if promising_outputs:
        print(f"\nπŸŽ‰ Found {len(promising_outputs)} promising outputs with word-like patterns!")
        for output in promising_outputs[:5]:  # Show first 5
            print(f"   {output['method']}: '{output['prompt']}' β†’ '{output['text']}'")
    else:
        print("\nπŸ’­ No clear word patterns found yet - model may need more training or different approach")
    
    return {
        'length_results': length_results,
        'param_results': param_results,
        'coherence_results': coherence_results,
        'summary': {
            'autoregressive_successes': total_auto,
            'diffusion_successes': total_diff,
            'promising_outputs': len(promising_outputs)
        }
    }

if __name__ == "__main__":
    results = main()