File size: 18,728 Bytes
bde6dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#!/usr/bin/env python3
"""
BitTransformerLM Denoising Diffusion Inference Tests
====================================================

Test the breakthrough model using built-in denoising diffusion generation
to potentially resolve parity errors and improve text quality.
"""

import sys
import torch
import math
import logging

# Add paths for imports
sys.path.append('/data')
sys.path.append('/data/BitTransformerLM')

from bit_transformer import BitTransformerLM, text_to_bits, bits_to_text, diffusion_inference

# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

def load_breakthrough_model():
    """Load the trained breakthrough BitTransformerLM."""
    print("πŸš€ Loading breakthrough BitTransformerLM for diffusion inference...")
    
    # Create model with EXACT same config as training
    model = BitTransformerLM(
        d_model=512,
        nhead=16,
        num_layers=8,
        dim_feedforward=1024,
        max_seq_len=512,
        reversible=True,
        use_checkpoint=False,  # Disable for inference
        use_autocast=False,    # Disable for inference
        use_act=True,
        act_threshold=0.9,
        lambda_K=0.05,
        lambda_C=0.05,
        lambda_S=0.05
    )
    
    # Load the breakthrough checkpoint
    checkpoint = torch.load('/data/BitTransformerLM/checkpoints/checkpoint_best.pt', map_location='cpu')
    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval()
    
    print(f"βœ… Model loaded! Loss: {checkpoint['loss']:.6f}, Epoch: {checkpoint['epoch']}")
    
    total_params = sum(p.numel() for p in model.parameters())
    print(f"πŸ“Š Parameters: {total_params:,}")
    
    return model

def test_basic_diffusion_generation(model):
    """Test basic diffusion generation without conditioning."""
    print("\nπŸ§ͺ === BASIC DIFFUSION GENERATION TESTS ===")
    
    test_configs = [
        {"length": 36, "steps": 8, "schedule": "linear", "name": "4 chars, linear"},
        {"length": 45, "steps": 12, "schedule": "cosine", "name": "5 chars, cosine"}, 
        {"length": 54, "steps": 16, "schedule": "exp", "name": "6 chars, exp"},
    ]
    
    results = []
    
    for config in test_configs:
        print(f"\n--- {config['name']} ---")
        print(f"Config: {config['length']} bits, {config['steps']} steps, {config['schedule']} schedule")
        
        try:
            # Generate using diffusion inference
            generated_bits = diffusion_inference(
                model,
                length=config['length'],
                steps=config['steps'],
                schedule=config['schedule']
            )
            
            # Convert to list for processing
            bits_list = generated_bits.squeeze().tolist()
            print(f"Generated {len(bits_list)} bits: {bits_list[:18]}...")
            
            # Try to decode
            try:
                text = bits_to_text(bits_list)
                print(f"βœ… SUCCESS: '{text}'")
                results.append({"config": config, "text": text, "success": True})
            except Exception as decode_error:
                print(f"❌ Decode failed: {decode_error}")
                
                # Try manual character decode
                manual_text = ""
                for i in range(0, len(bits_list), 9):
                    if i + 8 < len(bits_list):
                        char_bits = bits_list[i:i+8]
                        byte_val = sum(bit * (2**(7-j)) for j, bit in enumerate(char_bits))
                        if 32 <= byte_val <= 126:
                            manual_text += chr(byte_val)
                        else:
                            manual_text += '?'
                
                print(f"πŸ”§ Manual decode: '{manual_text}'")
                results.append({"config": config, "text": manual_text, "success": False})
                
        except Exception as e:
            print(f"πŸ’₯ Generation failed: {e}")
            results.append({"config": config, "text": None, "success": False, "error": str(e)})
    
    return results

def test_conditioned_diffusion_generation(model):
    """Test diffusion generation conditioned on prompts."""
    print("\n🎯 === CONDITIONED DIFFUSION GENERATION TESTS ===")
    
    prompts = [
        "Hello",
        "Hi there",
        "What is your name?",
        "The weather is",
        "I am",
        "Yes",
        "No"
    ]
    
    results = []
    
    for prompt in prompts:
        print(f"\n--- Prompt: '{prompt}' ---")
        
        # Convert prompt to bits
        prompt_bits = text_to_bits(prompt)
        print(f"Prompt: {len(prompt_bits)} bits")
        
        # Generate continuation (prompt + generation)
        total_length = len(prompt_bits) + 45  # prompt + 5 characters
        
        # Create initial bits with prompt + noise
        init_bits = torch.zeros(1, total_length, dtype=torch.long)
        init_bits[0, :len(prompt_bits)] = torch.tensor(prompt_bits, dtype=torch.long)
        init_bits[0, len(prompt_bits):] = torch.randint(0, 2, (total_length - len(prompt_bits),))
        
        try:
            # Use diffusion inference with initialization
            generated_bits = diffusion_inference(
                model,
                length=total_length,
                steps=12,
                init_bits=init_bits,
                schedule="cosine"
            )
            
            # Extract just the generated part
            full_bits = generated_bits.squeeze().tolist()
            generated_only = full_bits[len(prompt_bits):]
            
            print(f"Generated {len(generated_only)} bits for continuation")
            
            # Try to decode the continuation
            try:
                continuation = bits_to_text(generated_only)
                full_result = prompt + continuation
                print(f"βœ… SUCCESS: '{prompt}' β†’ '{full_result}'")
                results.append({
                    "prompt": prompt,
                    "continuation": continuation, 
                    "full_result": full_result,
                    "success": True
                })
            except Exception as decode_error:
                print(f"❌ Decode failed: {decode_error}")
                
                # Manual decode
                manual_continuation = ""
                for i in range(0, len(generated_only), 9):
                    if i + 8 < len(generated_only):
                        char_bits = generated_only[i:i+8]
                        byte_val = sum(bit * (2**(7-j)) for j, bit in enumerate(char_bits))
                        if 32 <= byte_val <= 126:
                            manual_continuation += chr(byte_val)
                        else:
                            manual_continuation += '?'
                
                full_result = prompt + manual_continuation
                print(f"πŸ”§ Manual decode: '{prompt}' β†’ '{full_result}'")
                results.append({
                    "prompt": prompt,
                    "continuation": manual_continuation,
                    "full_result": full_result, 
                    "success": False
                })
                
        except Exception as e:
            print(f"πŸ’₯ Generation failed: {e}")
            results.append({
                "prompt": prompt,
                "continuation": None,
                "full_result": None,
                "success": False,
                "error": str(e)
            })
    
    return results

def test_code_diffusion_completion(model):
    """Test diffusion generation on code/math completion."""
    print("\nπŸ’» === CODE DIFFUSION COMPLETION TESTS ===")
    
    code_prompts = [
        # Math
        "2 + 2 =",
        "1 + 1 =", 
        "5 * 3 =",
        "10 / 2 =",
        
        # Programming
        "def hello():",
        "if x ==",
        "for i in",
        "print(",
        "return",
        
        # Patterns
        "a, b, c,",
        "1, 2, 3,",
        "function(",
        "var x =",
    ]
    
    results = []
    
    for prompt in code_prompts:
        print(f"\n--- Code: '{prompt}' ---")
        
        prompt_bits = text_to_bits(prompt)
        print(f"Prompt: {len(prompt_bits)} bits")
        
        # Generate shorter completions for code
        completion_length = 36  # 4 characters
        total_length = len(prompt_bits) + completion_length
        
        # Initialize with prompt + noise
        init_bits = torch.zeros(1, total_length, dtype=torch.long)
        init_bits[0, :len(prompt_bits)] = torch.tensor(prompt_bits, dtype=torch.long)
        init_bits[0, len(prompt_bits):] = torch.randint(0, 2, (completion_length,))
        
        try:
            # Use exponential schedule for sharper code completions
            generated_bits = diffusion_inference(
                model,
                length=total_length,
                steps=16,  # More steps for better quality
                init_bits=init_bits,
                schedule="exp"
            )
            
            # Extract completion
            full_bits = generated_bits.squeeze().tolist()
            completion_bits = full_bits[len(prompt_bits):]
            
            # Try to decode
            try:
                completion = bits_to_text(completion_bits)
                full_result = prompt + completion
                print(f"βœ… SUCCESS: '{prompt}' β†’ '{full_result}'")
                
                # Analyze completion quality for code
                analysis = []
                if any(c.isalnum() for c in completion):
                    analysis.append("Contains alphanumeric")
                if any(c in "0123456789" for c in completion):
                    analysis.append("Contains numbers")
                if any(c in "=(){}[];," for c in completion):
                    analysis.append("Contains code symbols")
                if any(c in " \n\t" for c in completion):
                    analysis.append("Contains whitespace")
                
                if analysis:
                    print(f"   πŸ“Š Analysis: {', '.join(analysis)}")
                
                results.append({
                    "prompt": prompt,
                    "completion": completion,
                    "full_result": full_result,
                    "analysis": analysis,
                    "success": True
                })
                
            except Exception as decode_error:
                print(f"❌ Decode failed: {decode_error}")
                
                # Manual decode with analysis
                manual_completion = ""
                char_types = {"letters": 0, "numbers": 0, "symbols": 0, "printable": 0}
                
                for i in range(0, len(completion_bits), 9):
                    if i + 8 < len(completion_bits):
                        char_bits = completion_bits[i:i+8]
                        byte_val = sum(bit * (2**(7-j)) for j, bit in enumerate(char_bits))
                        if 32 <= byte_val <= 126:
                            char = chr(byte_val)
                            manual_completion += char
                            char_types["printable"] += 1
                            if char.isalpha():
                                char_types["letters"] += 1
                            elif char.isdigit():
                                char_types["numbers"] += 1
                            elif char in "=(){}[];,+-*/<>!@#$%^&":
                                char_types["symbols"] += 1
                        else:
                            manual_completion += '?'
                
                full_result = prompt + manual_completion
                print(f"πŸ”§ Manual decode: '{prompt}' β†’ '{full_result}'")
                print(f"   πŸ“Š Character types: {char_types}")
                
                results.append({
                    "prompt": prompt,
                    "completion": manual_completion,
                    "full_result": full_result,
                    "char_types": char_types,
                    "success": False
                })
                
        except Exception as e:
            print(f"πŸ’₯ Generation failed: {e}")
            results.append({
                "prompt": prompt,
                "completion": None,
                "full_result": None,
                "success": False,
                "error": str(e)
            })
    
    return results

def compare_diffusion_vs_autoregressive(model):
    """Compare diffusion vs autoregressive generation quality."""
    print("\nβš–οΈ  === DIFFUSION vs AUTOREGRESSIVE COMPARISON ===")
    
    test_prompts = ["Hello", "Hi", "The cat", "Yes"]
    comparison_results = []
    
    for prompt in test_prompts:
        print(f"\n--- Comparing generation for: '{prompt}' ---")
        
        prompt_bits = text_to_bits(prompt)
        generation_length = 27  # 3 characters
        
        # AUTOREGRESSIVE GENERATION (previous method)
        print("πŸ”„ Autoregressive generation:")
        try:
            generated_bits_ar = prompt_bits.copy()
            
            with torch.no_grad():
                for i in range(generation_length):
                    context = generated_bits_ar[-300:] if len(generated_bits_ar) > 300 else generated_bits_ar
                    context_tensor = torch.tensor(context, dtype=torch.long).unsqueeze(0)
                    
                    logits, _ = model(context_tensor)  # causal=True by default
                    next_bit_logits = logits[0, -1, :]
                    
                    # Temperature sampling
                    next_bit_logits = next_bit_logits / 0.8
                    probs = torch.softmax(next_bit_logits, dim=-1)
                    next_bit = torch.multinomial(probs, 1).item()
                    
                    generated_bits_ar.append(next_bit)
            
            ar_completion_bits = generated_bits_ar[len(prompt_bits):]
            try:
                ar_completion = bits_to_text(ar_completion_bits)
                ar_success = True
            except:
                ar_completion = "DECODE_FAILED"
                ar_success = False
            
            print(f"   Result: '{prompt}' β†’ '{prompt + ar_completion}' (Success: {ar_success})")
            
        except Exception as e:
            ar_completion = f"ERROR: {e}"
            ar_success = False
            print(f"   Result: ERROR - {e}")
        
        # DIFFUSION GENERATION
        print("🌊 Diffusion generation:")
        try:
            total_length = len(prompt_bits) + generation_length
            init_bits = torch.zeros(1, total_length, dtype=torch.long)
            init_bits[0, :len(prompt_bits)] = torch.tensor(prompt_bits, dtype=torch.long)
            init_bits[0, len(prompt_bits):] = torch.randint(0, 2, (generation_length,))
            
            generated_bits_diff = diffusion_inference(
                model,
                length=total_length,
                steps=12,
                init_bits=init_bits,
                schedule="cosine"
            )
            
            diff_completion_bits = generated_bits_diff.squeeze().tolist()[len(prompt_bits):]
            try:
                diff_completion = bits_to_text(diff_completion_bits)
                diff_success = True
            except:
                diff_completion = "DECODE_FAILED"
                diff_success = False
                
            print(f"   Result: '{prompt}' β†’ '{prompt + diff_completion}' (Success: {diff_success})")
            
        except Exception as e:
            diff_completion = f"ERROR: {e}"
            diff_success = False
            print(f"   Result: ERROR - {e}")
        
        # Store comparison
        comparison_results.append({
            "prompt": prompt,
            "autoregressive": {"completion": ar_completion, "success": ar_success},
            "diffusion": {"completion": diff_completion, "success": diff_success}
        })
        
        # Quick quality assessment
        if diff_success and ar_success:
            print(f"   πŸ† Both methods succeeded!")
        elif diff_success and not ar_success:
            print(f"   🌊 Diffusion wins - only it succeeded!")
        elif ar_success and not diff_success:
            print(f"   πŸ”„ Autoregressive wins - only it succeeded!")
        else:
            print(f"   😞 Both methods failed")
    
    return comparison_results

def main():
    """Run all diffusion inference tests."""
    print("πŸš€ BITRANSFORMERLM DENOISING DIFFUSION INFERENCE TESTS")
    print("=" * 70)
    print("Testing hypothesis: Denoising diffusion should reduce parity errors")
    print("by treating parity bits as noise and filtering them out.")
    print("=" * 70)
    
    # Load model
    model = load_breakthrough_model()
    
    # Run all tests
    test_results = {
        "basic_diffusion": test_basic_diffusion_generation(model),
        "conditioned_diffusion": test_conditioned_diffusion_generation(model),
        "code_diffusion": test_code_diffusion_completion(model),
        "comparison": compare_diffusion_vs_autoregressive(model),
    }
    
    print("\n🎯 === FINAL SUMMARY ===")
    
    # Basic diffusion success rate
    basic_successes = sum(1 for r in test_results["basic_diffusion"] if r.get("success", False))
    print(f"Basic diffusion success rate: {basic_successes}/{len(test_results['basic_diffusion'])}")
    
    # Conditioned diffusion success rate  
    cond_successes = sum(1 for r in test_results["conditioned_diffusion"] if r.get("success", False))
    print(f"Conditioned diffusion success rate: {cond_successes}/{len(test_results['conditioned_diffusion'])}")
    
    # Code diffusion success rate
    code_successes = sum(1 for r in test_results["code_diffusion"] if r.get("success", False))
    print(f"Code diffusion success rate: {code_successes}/{len(test_results['code_diffusion'])}")
    
    # Comparison analysis
    diff_wins = sum(1 for r in test_results["comparison"] 
                   if r["diffusion"]["success"] and not r["autoregressive"]["success"])
    ar_wins = sum(1 for r in test_results["comparison"] 
                 if r["autoregressive"]["success"] and not r["diffusion"]["success"])
    both_win = sum(1 for r in test_results["comparison"] 
                  if r["diffusion"]["success"] and r["autoregressive"]["success"])
    
    print(f"Method comparison - Diffusion only: {diff_wins}, Autoregressive only: {ar_wins}, Both: {both_win}")
    
    return test_results

if __name__ == "__main__":
    main()