File size: 4,686 Bytes
9202d01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/env python3
"""
Test BitTransformerLM on Code/Math Completion
"""

import sys
import torch
import torch.nn.functional as F

sys.path.append('/data')
sys.path.append('/data/BitTransformerLM')

from bit_transformer import BitTransformerLM, text_to_bits, bits_to_text

def load_model():
    model = BitTransformerLM(
        d_model=512, nhead=16, num_layers=8, dim_feedforward=1024,
        max_seq_len=512, reversible=True, use_checkpoint=False,
        use_autocast=False, use_act=True, act_threshold=0.9,
        lambda_K=0.05, lambda_C=0.05, lambda_S=0.05
    )
    
    checkpoint = torch.load('/data/BitTransformerLM/checkpoints/checkpoint_best.pt', map_location='cpu')
    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval()
    
    return model

def code_generate(model, prompt, max_chars=10):
    """Generate code/math completion."""
    print(f"\n🧮 Code completion for: '{prompt}'")
    
    input_bits = text_to_bits(prompt)
    generated_bits = input_bits.copy()
    
    results = []
    
    with torch.no_grad():
        for char_idx in range(max_chars):
            # Generate 9 bits for one character
            char_bits = []
            
            for bit_idx in range(9):
                context = generated_bits + char_bits
                context = context[-400:] if len(context) > 400 else context
                context_tensor = torch.tensor(context, dtype=torch.long).unsqueeze(0)
                
                logits, telemetry = model(context_tensor)
                next_bit_logits = logits[0, -1, :]
                
                if bit_idx < 8:  # Data bits
                    # Use different sampling for code (more deterministic)
                    temperature = 0.5  # Lower temperature for code
                    next_bit_logits = next_bit_logits / temperature
                    
                    # Greedy sampling for first few characters to see most likely
                    if char_idx < 3:
                        next_bit = torch.argmax(next_bit_logits).item()
                    else:
                        probs = F.softmax(next_bit_logits, dim=-1)
                        next_bit = torch.multinomial(probs, 1).item()
                else:  # Parity bit
                    data_bits = char_bits[:8]
                    expected_parity = sum(data_bits) % 2
                    next_bit = expected_parity
                
                char_bits.append(next_bit)
            
            # Add character and try to decode
            generated_bits.extend(char_bits)
            
            # Decode this character
            data_bits = char_bits[:8]
            byte_val = sum(bit * (2**(7-i)) for i, bit in enumerate(data_bits))
            
            if 32 <= byte_val <= 126:  # Printable ASCII
                char = chr(byte_val)
                print(f"  +'{char}' (confidence: {torch.max(F.softmax(next_bit_logits, dim=-1)).item():.3f})")
                results.append(char)
                
                # Stop on natural code endings
                if char in ';{}()[]':
                    break
            else:
                print(f"  +[{byte_val}] (non-printable)")
                results.append('?')
    
    completion = ''.join(results)
    print(f"✨ Result: '{prompt}' → '{prompt}{completion}'")
    
    return completion

def main():
    print("🚀 BITRANSFORMERLM CODE/MATH COMPLETION TEST")
    print("=" * 50)
    
    model = load_model()
    print("✅ Model loaded!")
    
    # Test structured prompts that might have learned patterns
    test_cases = [
        # Math equations
        "2 + 2 =",
        "1 + 1 =", 
        "5 * 3 =",
        "10 / 2 =",
        
        # Simple code patterns
        "def hello():",
        "if x ==",
        "for i in",
        "print(",
        "return",
        
        # Simple patterns
        "a, b, c,", 
        "1, 2, 3,",
        "red, blue,",
        
        # HTML/markup
        "<div>",
        "function(",
        "var x =",
    ]
    
    print(f"\n🧮 Testing {len(test_cases)} code/math patterns:")
    
    for i, prompt in enumerate(test_cases):
        print(f"\n--- Test {i+1}/{len(test_cases)} ---")
        completion = code_generate(model, prompt, max_chars=6)
        
        # Quick analysis
        if any(c.isalnum() for c in completion):
            print("   📝 Contains alphanumeric - GOOD!")
        if any(c in "0123456789" for c in completion):
            print("   🔢 Contains numbers - EXCELLENT!")
        if any(c in "=(){}[];," for c in completion):
            print("   💻 Contains code symbols - PROMISING!")

if __name__ == "__main__":
    main()