Upload modeling_esm_plusplus.py with huggingface_hub
Browse files- modeling_esm_plusplus.py +1076 -1076
modeling_esm_plusplus.py
CHANGED
|
@@ -1,1076 +1,1076 @@
|
|
| 1 |
-
"""
|
| 2 |
-
ESM++ model implementation.
|
| 3 |
-
|
| 4 |
-
ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility
|
| 5 |
-
The ESM Python package is not required
|
| 6 |
-
|
| 7 |
-
Modified from https://github.com/evolutionaryscale/esm
|
| 8 |
-
License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement
|
| 9 |
-
"""
|
| 10 |
-
|
| 11 |
-
import math
|
| 12 |
-
import os
|
| 13 |
-
import torch
|
| 14 |
-
import torch.nn as nn
|
| 15 |
-
import torch.nn.functional as F
|
| 16 |
-
from dataclasses import dataclass
|
| 17 |
-
from functools import cache, partial
|
| 18 |
-
from pathlib import Path
|
| 19 |
-
from typing import Optional, Tuple, Union
|
| 20 |
-
from einops import rearrange, repeat
|
| 21 |
-
from huggingface_hub import snapshot_download
|
| 22 |
-
from tokenizers import Tokenizer
|
| 23 |
-
from tokenizers.models import BPE
|
| 24 |
-
from tokenizers.processors import TemplateProcessing
|
| 25 |
-
from torch.utils.data import Dataset, DataLoader
|
| 26 |
-
from tqdm.auto import tqdm
|
| 27 |
-
from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig
|
| 28 |
-
from transformers.modeling_outputs import ModelOutput
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
class ESMplusplusConfig(PretrainedConfig):
|
| 32 |
-
"""Configuration class for ESM++ model.
|
| 33 |
-
|
| 34 |
-
Args:
|
| 35 |
-
vocab_size: Size of the vocabulary
|
| 36 |
-
hidden_size: Dimension of hidden layers
|
| 37 |
-
num_attention_heads: Number of attention heads
|
| 38 |
-
num_hidden_layers: Number of transformer layers
|
| 39 |
-
num_labels: Number of output labels for classification
|
| 40 |
-
problem_type: Type of problem - regression, single/multi label classification
|
| 41 |
-
"""
|
| 42 |
-
model_type = "ESMplusplus"
|
| 43 |
-
def __init__(
|
| 44 |
-
self,
|
| 45 |
-
vocab_size: int = 64,
|
| 46 |
-
hidden_size: int = 960,
|
| 47 |
-
num_attention_heads: int = 15,
|
| 48 |
-
num_hidden_layers: int = 30,
|
| 49 |
-
num_labels: int = 2,
|
| 50 |
-
problem_type: str | None = None,
|
| 51 |
-
dropout: float = 0.0,
|
| 52 |
-
initializer_range: float = 0.02,
|
| 53 |
-
**kwargs,
|
| 54 |
-
):
|
| 55 |
-
super().__init__(**kwargs)
|
| 56 |
-
self.vocab_size = vocab_size
|
| 57 |
-
self.hidden_size = hidden_size
|
| 58 |
-
self.num_attention_heads = num_attention_heads
|
| 59 |
-
self.num_hidden_layers = num_hidden_layers
|
| 60 |
-
self.num_labels = num_labels
|
| 61 |
-
self.problem_type = problem_type
|
| 62 |
-
self.dropout = dropout
|
| 63 |
-
self.initializer_range = initializer_range
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
### Rotary Embeddings
|
| 67 |
-
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
|
| 68 |
-
"""Rotates half the hidden dims of the input."""
|
| 69 |
-
if not interleaved:
|
| 70 |
-
x1, x2 = x.chunk(2, dim=-1)
|
| 71 |
-
return torch.cat((-x2, x1), dim=-1)
|
| 72 |
-
else:
|
| 73 |
-
x1, x2 = x[..., ::2], x[..., 1::2]
|
| 74 |
-
return rearrange(
|
| 75 |
-
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def apply_rotary_emb_torch(
|
| 80 |
-
x: torch.Tensor,
|
| 81 |
-
cos: torch.Tensor,
|
| 82 |
-
sin: torch.Tensor,
|
| 83 |
-
interleaved: bool = False,
|
| 84 |
-
_inplace: bool = False,
|
| 85 |
-
) -> torch.Tensor:
|
| 86 |
-
"""Apply rotary embeddings to input based on cos and sin."""
|
| 87 |
-
ro_dim = cos.shape[-1] * 2
|
| 88 |
-
assert ro_dim <= x.shape[-1]
|
| 89 |
-
seqlen = x.size(1)
|
| 90 |
-
cos = cos[:seqlen]
|
| 91 |
-
sin = sin[:seqlen]
|
| 92 |
-
cos = repeat(cos, "s d -> s 1 (2 d)")
|
| 93 |
-
sin = repeat(sin, "s d -> s 1 (2 d)")
|
| 94 |
-
return torch.cat(
|
| 95 |
-
[
|
| 96 |
-
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
|
| 97 |
-
x[..., ro_dim:],
|
| 98 |
-
],
|
| 99 |
-
dim=-1,
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
class RotaryEmbedding(torch.nn.Module):
|
| 104 |
-
"""Rotary position embeddings.
|
| 105 |
-
|
| 106 |
-
Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding"
|
| 107 |
-
|
| 108 |
-
Args:
|
| 109 |
-
dim: Dimension of the embedding
|
| 110 |
-
base: Base for computing angular frequencies
|
| 111 |
-
interleaved: Whether to use interleaved rotations
|
| 112 |
-
scale_base: Base for scaling
|
| 113 |
-
scaling_factor: Factor for scaling positions
|
| 114 |
-
pos_idx_in_fp32: Whether to compute position indices in fp32
|
| 115 |
-
device: Computation device
|
| 116 |
-
"""
|
| 117 |
-
def __init__(
|
| 118 |
-
self,
|
| 119 |
-
dim: int,
|
| 120 |
-
base: float = 10000.0,
|
| 121 |
-
interleaved: bool = False,
|
| 122 |
-
scale_base: Optional[float] = None,
|
| 123 |
-
scaling_factor: float = 1.0,
|
| 124 |
-
pos_idx_in_fp32: bool = True,
|
| 125 |
-
device: Optional[torch.device] = None,
|
| 126 |
-
):
|
| 127 |
-
super().__init__()
|
| 128 |
-
self.dim = dim
|
| 129 |
-
self.base = float(base)
|
| 130 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 131 |
-
self.interleaved = interleaved
|
| 132 |
-
self.scale_base = scale_base
|
| 133 |
-
self.scaling_factor = scaling_factor
|
| 134 |
-
self.device = device
|
| 135 |
-
|
| 136 |
-
self._seq_len_cached = 0
|
| 137 |
-
self._cos_cached = None
|
| 138 |
-
self._sin_cached = None
|
| 139 |
-
self._cos_k_cached = None
|
| 140 |
-
self._sin_k_cached = None
|
| 141 |
-
self.reset_parameters()
|
| 142 |
-
|
| 143 |
-
def reset_parameters(self):
|
| 144 |
-
"""Reset the parameters of the embedding."""
|
| 145 |
-
inv_freq = self._compute_inv_freq(self.device)
|
| 146 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 147 |
-
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
|
| 148 |
-
scale = (
|
| 149 |
-
(arange + 0.4 * self.dim) / (1.4 * self.dim)
|
| 150 |
-
if self.scale_base is not None
|
| 151 |
-
else None
|
| 152 |
-
)
|
| 153 |
-
self.register_buffer("scale", scale)
|
| 154 |
-
|
| 155 |
-
def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor:
|
| 156 |
-
"""Compute inverse frequency bands."""
|
| 157 |
-
return 1 / (
|
| 158 |
-
self.base
|
| 159 |
-
** (
|
| 160 |
-
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
|
| 161 |
-
/ self.dim
|
| 162 |
-
)
|
| 163 |
-
)
|
| 164 |
-
|
| 165 |
-
def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
| 166 |
-
"""Update the cached cosine and sine values."""
|
| 167 |
-
if (
|
| 168 |
-
seqlen > self._seq_len_cached
|
| 169 |
-
or self._cos_cached is None
|
| 170 |
-
or self._cos_cached.device != device
|
| 171 |
-
or self._cos_cached.dtype != dtype
|
| 172 |
-
or (self.training and self._cos_cached.is_inference())
|
| 173 |
-
):
|
| 174 |
-
self._seq_len_cached = seqlen
|
| 175 |
-
if self.pos_idx_in_fp32:
|
| 176 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 177 |
-
t /= self.scaling_factor
|
| 178 |
-
if self.inv_freq.dtype != torch.float32:
|
| 179 |
-
inv_freq = self.inv_freq.to(torch.float32)
|
| 180 |
-
else:
|
| 181 |
-
inv_freq = self.inv_freq
|
| 182 |
-
else:
|
| 183 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 184 |
-
t /= self.scaling_factor
|
| 185 |
-
inv_freq = self.inv_freq
|
| 186 |
-
freqs = torch.outer(t, inv_freq)
|
| 187 |
-
|
| 188 |
-
if self.scale is None:
|
| 189 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 190 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 191 |
-
else:
|
| 192 |
-
power = (
|
| 193 |
-
torch.arange(
|
| 194 |
-
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
| 195 |
-
)
|
| 196 |
-
- seqlen // 2
|
| 197 |
-
) / self.scale_base
|
| 198 |
-
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
| 199 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 200 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 201 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 202 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 203 |
-
|
| 204 |
-
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 205 |
-
"""Apply rotary embeddings to queries and keys.
|
| 206 |
-
|
| 207 |
-
Args:
|
| 208 |
-
q: Query tensor of shape (batch, seqlen, nheads, headdim)
|
| 209 |
-
k: Key tensor of shape (batch, seqlen, nheads, headdim)
|
| 210 |
-
|
| 211 |
-
Returns:
|
| 212 |
-
Tuple of rotated query and key tensors
|
| 213 |
-
"""
|
| 214 |
-
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
|
| 215 |
-
assert self._cos_cached is not None
|
| 216 |
-
assert self._sin_cached is not None
|
| 217 |
-
if self.scale is None:
|
| 218 |
-
return (
|
| 219 |
-
apply_rotary_emb_torch(
|
| 220 |
-
q,
|
| 221 |
-
self._cos_cached,
|
| 222 |
-
self._sin_cached,
|
| 223 |
-
self.interleaved,
|
| 224 |
-
True, # inplace=True
|
| 225 |
-
),
|
| 226 |
-
apply_rotary_emb_torch(
|
| 227 |
-
k,
|
| 228 |
-
self._cos_cached,
|
| 229 |
-
self._sin_cached,
|
| 230 |
-
self.interleaved,
|
| 231 |
-
True, # inplace=True
|
| 232 |
-
),
|
| 233 |
-
) # type: ignore
|
| 234 |
-
else:
|
| 235 |
-
assert False
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
### Feedforward Network Components
|
| 239 |
-
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
|
| 240 |
-
"""Compute corrected dimension for SwiGLU."""
|
| 241 |
-
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
class SwiGLU(nn.Module):
|
| 245 |
-
"""SwiGLU activation function."""
|
| 246 |
-
def __init__(self):
|
| 247 |
-
super(SwiGLU, self).__init__()
|
| 248 |
-
|
| 249 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 250 |
-
x1, x2 = x.chunk(2, dim=-1)
|
| 251 |
-
return F.silu(x1) * x2
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential:
|
| 255 |
-
"""Create SwiGLU feedforward network with layer normalization."""
|
| 256 |
-
return nn.Sequential(
|
| 257 |
-
nn.LayerNorm(d_model),
|
| 258 |
-
nn.Linear(
|
| 259 |
-
d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False
|
| 260 |
-
),
|
| 261 |
-
SwiGLU(),
|
| 262 |
-
nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False),
|
| 263 |
-
)
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
### Attention
|
| 267 |
-
class MultiHeadAttention(nn.Module):
|
| 268 |
-
"""Multi-head attention with rotary embeddings.
|
| 269 |
-
|
| 270 |
-
Args:
|
| 271 |
-
d_model: Model dimension
|
| 272 |
-
n_heads: Number of attention heads
|
| 273 |
-
"""
|
| 274 |
-
def __init__(self, d_model: int, n_heads: int):
|
| 275 |
-
super().__init__()
|
| 276 |
-
self.d_model = d_model
|
| 277 |
-
self.n_heads = n_heads
|
| 278 |
-
self.d_head = self.d_model // self.n_heads
|
| 279 |
-
self.layernorm_qkv = nn.Sequential(
|
| 280 |
-
nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False)
|
| 281 |
-
)
|
| 282 |
-
self.out_proj = nn.Linear(d_model, d_model, bias=False)
|
| 283 |
-
self.q_ln = nn.LayerNorm(d_model, bias=False)
|
| 284 |
-
self.k_ln = nn.LayerNorm(d_model, bias=False)
|
| 285 |
-
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
|
| 286 |
-
self.rotary = RotaryEmbedding(d_model // n_heads)
|
| 287 |
-
|
| 288 |
-
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 289 |
-
"""Apply rotary embeddings to query and key."""
|
| 290 |
-
q = q.unflatten(-1, (self.n_heads, self.d_head))
|
| 291 |
-
k = k.unflatten(-1, (self.n_heads, self.d_head))
|
| 292 |
-
q, k = self.rotary(q, k)
|
| 293 |
-
q = q.flatten(-2, -1)
|
| 294 |
-
k = k.flatten(-2, -1)
|
| 295 |
-
return q, k
|
| 296 |
-
|
| 297 |
-
def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 298 |
-
"""
|
| 299 |
-
Args:
|
| 300 |
-
x: Input tensor
|
| 301 |
-
attention_mask: Optional attention mask
|
| 302 |
-
output_attentions: Whether to return attention weights
|
| 303 |
-
|
| 304 |
-
Returns:
|
| 305 |
-
Output tensor after self attention, and optionally attention weights
|
| 306 |
-
"""
|
| 307 |
-
attn_weights = None
|
| 308 |
-
qkv_BLD3 = self.layernorm_qkv(x)
|
| 309 |
-
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
|
| 310 |
-
query_BLD, key_BLD = (
|
| 311 |
-
self.q_ln(query_BLD).to(query_BLD.dtype),
|
| 312 |
-
self.k_ln(key_BLD).to(query_BLD.dtype),
|
| 313 |
-
)
|
| 314 |
-
query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD)
|
| 315 |
-
query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD))
|
| 316 |
-
|
| 317 |
-
if output_attentions: # Manual attention computation
|
| 318 |
-
L, S = query_BLD.size(-2), key_BLD.size(-2)
|
| 319 |
-
scale = 1 / math.sqrt(query_BLD.size(-1))
|
| 320 |
-
attn_bias = torch.zeros(L, S, dtype=query_BLD.dtype, device=query_BLD.device)
|
| 321 |
-
if attention_mask is not None:
|
| 322 |
-
if attention_mask.dtype == torch.bool:
|
| 323 |
-
attention_mask.masked_fill_(attention_mask.logical_not(), float('-inf'))
|
| 324 |
-
else:
|
| 325 |
-
attn_bias += attention_mask
|
| 326 |
-
|
| 327 |
-
attn_weights = torch.matmul(query_BHLD, key_BHLD.transpose(-2, -1)) * scale
|
| 328 |
-
attn_weights += attn_bias
|
| 329 |
-
attn_weights = F.softmax(attn_weights, dim=-1)
|
| 330 |
-
context_BHLD = torch.matmul(attn_weights, value_BHLD)
|
| 331 |
-
else:
|
| 332 |
-
context_BHLD = F.scaled_dot_product_attention(
|
| 333 |
-
query_BHLD, key_BHLD, value_BHLD, attention_mask
|
| 334 |
-
)
|
| 335 |
-
|
| 336 |
-
context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)")
|
| 337 |
-
output = self.out_proj(context_BLD)
|
| 338 |
-
return output, attn_weights
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
### Regression Head
|
| 342 |
-
def RegressionHead(d_model: int, output_dim: int, hidden_dim: Optional[int] = None) -> nn.Module:
|
| 343 |
-
"""Create a regression head with optional hidden dimension.
|
| 344 |
-
|
| 345 |
-
Args:
|
| 346 |
-
d_model: Input dimension
|
| 347 |
-
output_dim: Output dimension
|
| 348 |
-
hidden_dim: Optional hidden dimension (defaults to d_model)
|
| 349 |
-
"""
|
| 350 |
-
hidden_dim = hidden_dim if hidden_dim is not None else d_model
|
| 351 |
-
return nn.Sequential(
|
| 352 |
-
nn.Linear(d_model, hidden_dim),
|
| 353 |
-
nn.GELU(),
|
| 354 |
-
nn.LayerNorm(hidden_dim),
|
| 355 |
-
nn.Linear(hidden_dim, output_dim),
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
### Transformer Block
|
| 360 |
-
class UnifiedTransformerBlock(nn.Module):
|
| 361 |
-
"""Transformer block with attention and feedforward layers.
|
| 362 |
-
|
| 363 |
-
Args:
|
| 364 |
-
d_model: Model dimension
|
| 365 |
-
n_heads: Number of attention heads
|
| 366 |
-
residue_scaling_factor: Factor for scaling residual connections
|
| 367 |
-
expansion_ratio: Expansion ratio for feedforward network
|
| 368 |
-
"""
|
| 369 |
-
def __init__(
|
| 370 |
-
self,
|
| 371 |
-
d_model: int,
|
| 372 |
-
n_heads: int,
|
| 373 |
-
residue_scaling_factor: float = 1,
|
| 374 |
-
expansion_ratio: float = 8 / 3,
|
| 375 |
-
dropout: float = 0.0,
|
| 376 |
-
):
|
| 377 |
-
super().__init__()
|
| 378 |
-
self.attn = MultiHeadAttention(d_model, n_heads)
|
| 379 |
-
self.ffn = swiglu_ln_ffn(d_model, expansion_ratio)
|
| 380 |
-
self.scaling_factor = residue_scaling_factor
|
| 381 |
-
self.dropout = nn.Dropout(dropout)
|
| 382 |
-
|
| 383 |
-
def forward(
|
| 384 |
-
self,
|
| 385 |
-
x: torch.Tensor,
|
| 386 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 387 |
-
output_attentions: bool = False,
|
| 388 |
-
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 389 |
-
"""
|
| 390 |
-
Args:
|
| 391 |
-
x: Input tensor
|
| 392 |
-
attention_mask: Optional attention mask
|
| 393 |
-
output_attentions: Whether to return attention weights
|
| 394 |
-
|
| 395 |
-
Returns:
|
| 396 |
-
Output tensor after transformer block, and optionally attention weights
|
| 397 |
-
"""
|
| 398 |
-
attn_output, attn_weights = self.attn(x, attention_mask, output_attentions)
|
| 399 |
-
x = x + self.dropout(attn_output) / self.scaling_factor
|
| 400 |
-
x = x + self.dropout(self.ffn(x)) / self.scaling_factor
|
| 401 |
-
return x, attn_weights
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
### Model Outputs
|
| 405 |
-
@dataclass
|
| 406 |
-
class TransformerOutput(ModelOutput):
|
| 407 |
-
"""Output type for transformer encoder."""
|
| 408 |
-
last_hidden_state: Optional[torch.Tensor] = None
|
| 409 |
-
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
| 410 |
-
attentions: Optional[Tuple[torch.Tensor]] = None
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
@dataclass
|
| 414 |
-
class ESMplusplusOutput(ModelOutput):
|
| 415 |
-
"""Output type for ESM++ models."""
|
| 416 |
-
loss: Optional[torch.Tensor] = None
|
| 417 |
-
logits: Optional[torch.Tensor] = None
|
| 418 |
-
last_hidden_state: Optional[torch.Tensor] = None
|
| 419 |
-
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
| 420 |
-
attentions: Optional[Tuple[torch.Tensor]] = None
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
### Transformer Stack
|
| 424 |
-
class TransformerStack(nn.Module):
|
| 425 |
-
"""Stack of transformer blocks.
|
| 426 |
-
|
| 427 |
-
Args:
|
| 428 |
-
d_model: Model dimension
|
| 429 |
-
n_heads: Number of attention heads
|
| 430 |
-
n_layers: Number of transformer layers
|
| 431 |
-
dropout: Dropout rate
|
| 432 |
-
"""
|
| 433 |
-
def __init__(
|
| 434 |
-
self,
|
| 435 |
-
d_model: int,
|
| 436 |
-
n_heads: int,
|
| 437 |
-
n_layers: int,
|
| 438 |
-
dropout: float = 0.0,
|
| 439 |
-
):
|
| 440 |
-
super().__init__()
|
| 441 |
-
self.blocks = nn.ModuleList(
|
| 442 |
-
[
|
| 443 |
-
UnifiedTransformerBlock(
|
| 444 |
-
d_model,
|
| 445 |
-
n_heads,
|
| 446 |
-
residue_scaling_factor=math.sqrt(n_layers / 36),
|
| 447 |
-
dropout=dropout,
|
| 448 |
-
)
|
| 449 |
-
for i in range(n_layers)
|
| 450 |
-
]
|
| 451 |
-
)
|
| 452 |
-
self.norm = nn.LayerNorm(d_model, bias=False)
|
| 453 |
-
self.gradient_checkpointing = False
|
| 454 |
-
|
| 455 |
-
def forward(
|
| 456 |
-
self,
|
| 457 |
-
x: torch.Tensor,
|
| 458 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 459 |
-
output_hidden_states: bool = False,
|
| 460 |
-
output_attentions: bool = False,
|
| 461 |
-
) -> TransformerOutput:
|
| 462 |
-
"""
|
| 463 |
-
Args:
|
| 464 |
-
x: Input tensor
|
| 465 |
-
attention_mask: Optional attention mask
|
| 466 |
-
output_hidden_states: Whether to return all hidden states
|
| 467 |
-
output_attentions: Whether to return attention weights
|
| 468 |
-
|
| 469 |
-
Returns:
|
| 470 |
-
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
| 471 |
-
"""
|
| 472 |
-
batch_size, seq_len, _ = x.shape
|
| 473 |
-
hidden_states = () if output_hidden_states else None
|
| 474 |
-
attentions = () if output_attentions else None
|
| 475 |
-
|
| 476 |
-
if attention_mask is not None:
|
| 477 |
-
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
|
| 478 |
-
|
| 479 |
-
for block in self.blocks:
|
| 480 |
-
if self.gradient_checkpointing and self.training:
|
| 481 |
-
x, attn_weights = self._gradient_checkpointing_func(
|
| 482 |
-
block.__call__,
|
| 483 |
-
x,
|
| 484 |
-
attention_mask,
|
| 485 |
-
output_attentions,
|
| 486 |
-
)
|
| 487 |
-
else:
|
| 488 |
-
x, attn_weights = block(x, attention_mask, output_attentions)
|
| 489 |
-
|
| 490 |
-
if attentions is not None:
|
| 491 |
-
attentions += (attn_weights,)
|
| 492 |
-
|
| 493 |
-
if output_hidden_states:
|
| 494 |
-
assert hidden_states is not None
|
| 495 |
-
hidden_states += (x,)
|
| 496 |
-
|
| 497 |
-
return TransformerOutput(
|
| 498 |
-
last_hidden_state=self.norm(x),
|
| 499 |
-
hidden_states=hidden_states,
|
| 500 |
-
attentions=attentions
|
| 501 |
-
)
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
### Dataset for Embedding
|
| 505 |
-
class ProteinDataset(Dataset):
|
| 506 |
-
"""Simple dataset for protein sequences."""
|
| 507 |
-
def __init__(self, sequences: list[str]):
|
| 508 |
-
self.sequences = sequences
|
| 509 |
-
|
| 510 |
-
def __len__(self) -> int:
|
| 511 |
-
return len(self.sequences)
|
| 512 |
-
|
| 513 |
-
def __getitem__(self, idx: int) -> str:
|
| 514 |
-
return self.sequences[idx]
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
class PreTrainedESMplusplusModel(PreTrainedModel):
|
| 518 |
-
"""
|
| 519 |
-
init weights for ESM++ models
|
| 520 |
-
"""
|
| 521 |
-
config_class = ESMplusplusConfig
|
| 522 |
-
base_model_prefix = "esm++"
|
| 523 |
-
supports_gradient_checkpointing = True
|
| 524 |
-
|
| 525 |
-
def _init_weights(self, module):
|
| 526 |
-
"""Initialize the weights"""
|
| 527 |
-
if isinstance(module, nn.Linear):
|
| 528 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 529 |
-
if module.bias is not None:
|
| 530 |
-
module.bias.data.zero_()
|
| 531 |
-
elif isinstance(module, nn.Embedding):
|
| 532 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 533 |
-
if module.padding_idx is not None:
|
| 534 |
-
module.weight.data[module.padding_idx].zero_()
|
| 535 |
-
elif isinstance(module, nn.LayerNorm):
|
| 536 |
-
module.bias.data.zero_()
|
| 537 |
-
module.weight.data.fill_(1.0)
|
| 538 |
-
|
| 539 |
-
@classmethod
|
| 540 |
-
def from_pretrained_esm(cls, model_name: str):
|
| 541 |
-
"""Load a pretrained ESM++ model."""
|
| 542 |
-
if '300' in model_name:
|
| 543 |
-
return ESMplusplus_300M()
|
| 544 |
-
elif '600' in model_name:
|
| 545 |
-
return ESMplusplus_600M()
|
| 546 |
-
else:
|
| 547 |
-
raise ValueError(f"Invalid model name: {model_name}")
|
| 548 |
-
|
| 549 |
-
@property
|
| 550 |
-
def device(self) -> torch.device:
|
| 551 |
-
"""Get the device of the model."""
|
| 552 |
-
return next(self.parameters()).device
|
| 553 |
-
|
| 554 |
-
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 555 |
-
"""Apply mean pooling to sequence outputs."""
|
| 556 |
-
if attention_mask is None:
|
| 557 |
-
return x.mean(dim=1)
|
| 558 |
-
else:
|
| 559 |
-
attention_mask = attention_mask.unsqueeze(-1)
|
| 560 |
-
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
| 561 |
-
|
| 562 |
-
def max_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 563 |
-
"""Apply max pooling to sequence outputs."""
|
| 564 |
-
if attention_mask is None:
|
| 565 |
-
return x.max(dim=1).values
|
| 566 |
-
else:
|
| 567 |
-
attention_mask = attention_mask.unsqueeze(-1)
|
| 568 |
-
return (x * attention_mask).max(dim=1).values
|
| 569 |
-
|
| 570 |
-
def cls_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 571 |
-
"""Apply cls pooling to sequence outputs."""
|
| 572 |
-
return x[:, 0, :]
|
| 573 |
-
|
| 574 |
-
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
|
| 575 |
-
"""Collate function for batching sequences."""
|
| 576 |
-
return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)
|
| 577 |
-
|
| 578 |
-
def _read_sequences_from_db(self, db_path: str) -> set[str]:
|
| 579 |
-
"""Read sequences from SQLite database."""
|
| 580 |
-
import sqlite3
|
| 581 |
-
sequences = []
|
| 582 |
-
with sqlite3.connect(db_path) as conn:
|
| 583 |
-
c = conn.cursor()
|
| 584 |
-
c.execute("SELECT sequence FROM embeddings")
|
| 585 |
-
while True:
|
| 586 |
-
row = c.fetchone()
|
| 587 |
-
if row is None:
|
| 588 |
-
break
|
| 589 |
-
sequences.append(row[0])
|
| 590 |
-
return set(sequences)
|
| 591 |
-
|
| 592 |
-
def embed_dataset(
|
| 593 |
-
self,
|
| 594 |
-
sequences: list[str],
|
| 595 |
-
batch_size: int = 2,
|
| 596 |
-
max_len: int = 512,
|
| 597 |
-
full_embeddings: bool = False,
|
| 598 |
-
full_precision: bool = False,
|
| 599 |
-
pooling_type: str = 'mean',
|
| 600 |
-
num_workers: int = 0,
|
| 601 |
-
sql: bool = False,
|
| 602 |
-
sql_db_path: str = 'embeddings.db',
|
| 603 |
-
) -> Optional[dict[str, torch.Tensor]]:
|
| 604 |
-
"""Embed a dataset of protein sequences.
|
| 605 |
-
|
| 606 |
-
Args:
|
| 607 |
-
sequences: List of protein sequences
|
| 608 |
-
batch_size: Batch size for processing
|
| 609 |
-
max_len: Maximum sequence length
|
| 610 |
-
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)
|
| 611 |
-
full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage
|
| 612 |
-
pooling_type: Type of pooling ('mean' or 'cls')
|
| 613 |
-
num_workers: Number of workers for data loading, 0 for the main process
|
| 614 |
-
sql: Whether to store embeddings in SQLite database - will be stored in float32
|
| 615 |
-
sql_db_path: Path to SQLite database
|
| 616 |
-
|
| 617 |
-
Returns:
|
| 618 |
-
Dictionary mapping sequences to embeddings, or None if sql=True
|
| 619 |
-
"""
|
| 620 |
-
sequences = list(set([seq[:max_len] for seq in sequences]))
|
| 621 |
-
sequences = sorted(sequences, key=len, reverse=True)
|
| 622 |
-
dataset = ProteinDataset(sequences)
|
| 623 |
-
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn)
|
| 624 |
-
device = self.device
|
| 625 |
-
|
| 626 |
-
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 627 |
-
if full_embeddings:
|
| 628 |
-
return residue_embeddings
|
| 629 |
-
elif pooling_type == 'mean':
|
| 630 |
-
return self.mean_pooling(residue_embeddings, attention_mask)
|
| 631 |
-
elif pooling_type == 'max':
|
| 632 |
-
return self.max_pooling(residue_embeddings, attention_mask)
|
| 633 |
-
elif pooling_type == 'cls':
|
| 634 |
-
return self.cls_pooling(residue_embeddings, attention_mask)
|
| 635 |
-
else:
|
| 636 |
-
raise ValueError(f"Invalid pooling type: {pooling_type}")
|
| 637 |
-
|
| 638 |
-
if sql:
|
| 639 |
-
import sqlite3
|
| 640 |
-
conn = sqlite3.connect(sql_db_path)
|
| 641 |
-
c = conn.cursor()
|
| 642 |
-
c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
|
| 643 |
-
already_embedded = self._read_sequences_from_db(sql_db_path)
|
| 644 |
-
to_embed = [seq for seq in sequences if seq not in already_embedded]
|
| 645 |
-
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
|
| 646 |
-
print(f"Embedding {len(to_embed)} new sequences")
|
| 647 |
-
if len(to_embed) > 0:
|
| 648 |
-
with torch.no_grad():
|
| 649 |
-
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
| 650 |
-
seqs = to_embed[i * batch_size:(i + 1) * batch_size]
|
| 651 |
-
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
| 652 |
-
x = self.embed(input_ids)
|
| 653 |
-
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach().float() # required for sql
|
| 654 |
-
embeddings = get_embeddings(residue_embeddings, attention_mask)
|
| 655 |
-
|
| 656 |
-
for seq, emb, mask in zip(seqs, embeddings, attention_mask):
|
| 657 |
-
if full_embeddings:
|
| 658 |
-
emb = emb[mask.bool()]
|
| 659 |
-
c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)",
|
| 660 |
-
(seq, emb.cpu().numpy().tobytes()))
|
| 661 |
-
|
| 662 |
-
if (i + 1) % 100 == 0:
|
| 663 |
-
conn.commit()
|
| 664 |
-
|
| 665 |
-
conn.commit()
|
| 666 |
-
conn.close()
|
| 667 |
-
return None
|
| 668 |
-
|
| 669 |
-
embeddings_dict = {}
|
| 670 |
-
with torch.no_grad():
|
| 671 |
-
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
| 672 |
-
seqs = sequences[i * batch_size:(i + 1) * batch_size]
|
| 673 |
-
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
| 674 |
-
x = self.embed(input_ids)
|
| 675 |
-
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach()
|
| 676 |
-
if full_precision:
|
| 677 |
-
residue_embeddings = residue_embeddings.float()
|
| 678 |
-
embeddings = get_embeddings(residue_embeddings, attention_mask).cpu()
|
| 679 |
-
for seq, emb in zip(seqs, embeddings):
|
| 680 |
-
embeddings_dict[seq] = emb
|
| 681 |
-
|
| 682 |
-
return embeddings_dict
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
### ESM++ Models
|
| 686 |
-
class ESMplusplusModel(PreTrainedESMplusplusModel):
|
| 687 |
-
"""
|
| 688 |
-
ESM++ model. transformer model with no heads
|
| 689 |
-
"""
|
| 690 |
-
config_class = ESMplusplusConfig
|
| 691 |
-
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
| 692 |
-
super().__init__(config, **kwargs)
|
| 693 |
-
self.config = config
|
| 694 |
-
self.vocab_size = config.vocab_size
|
| 695 |
-
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
| 696 |
-
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
| 697 |
-
self.tokenizer = EsmSequenceTokenizer()
|
| 698 |
-
self.init_weights()
|
| 699 |
-
|
| 700 |
-
def get_input_embeddings(self):
|
| 701 |
-
return self.embed
|
| 702 |
-
|
| 703 |
-
def set_input_embeddings(self, value):
|
| 704 |
-
self.embed = value
|
| 705 |
-
|
| 706 |
-
def forward(
|
| 707 |
-
self,
|
| 708 |
-
input_ids: Optional[torch.Tensor] = None,
|
| 709 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 710 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
| 711 |
-
output_attentions: Optional[bool] = None,
|
| 712 |
-
output_hidden_states: Optional[bool] = None,
|
| 713 |
-
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
| 714 |
-
) -> TransformerOutput:
|
| 715 |
-
"""Forward pass for masked language modeling.
|
| 716 |
-
|
| 717 |
-
Args:
|
| 718 |
-
input_ids: Input token IDs
|
| 719 |
-
attention_mask: Attention mask
|
| 720 |
-
inputs_embeds: Optional precomputed embeddings
|
| 721 |
-
output_hidden_states: Whether to return all hidden states
|
| 722 |
-
output_attentions: Whether to return attention weights
|
| 723 |
-
|
| 724 |
-
Returns:
|
| 725 |
-
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
| 726 |
-
"""
|
| 727 |
-
if inputs_embeds is None:
|
| 728 |
-
x = self.embed(input_ids)
|
| 729 |
-
else:
|
| 730 |
-
x = inputs_embeds
|
| 731 |
-
return self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
class ESMplusplusForMaskedLM(PreTrainedESMplusplusModel):
|
| 735 |
-
"""
|
| 736 |
-
ESM++ model for masked language modeling.
|
| 737 |
-
Implements the base ESM++ architecture with a masked language modeling head.
|
| 738 |
-
"""
|
| 739 |
-
config_class = ESMplusplusConfig
|
| 740 |
-
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
| 741 |
-
super().__init__(config, **kwargs)
|
| 742 |
-
self.config = config
|
| 743 |
-
self.vocab_size = config.vocab_size
|
| 744 |
-
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
| 745 |
-
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
| 746 |
-
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
|
| 747 |
-
self.ce_loss = nn.CrossEntropyLoss()
|
| 748 |
-
self.tokenizer = EsmSequenceTokenizer()
|
| 749 |
-
self.init_weights()
|
| 750 |
-
|
| 751 |
-
def get_input_embeddings(self):
|
| 752 |
-
return self.embed
|
| 753 |
-
|
| 754 |
-
def set_input_embeddings(self, value):
|
| 755 |
-
self.embed = value
|
| 756 |
-
|
| 757 |
-
def get_output_embeddings(self):
|
| 758 |
-
return self.sequence_head[-1]
|
| 759 |
-
|
| 760 |
-
def set_output_embeddings(self, new_embeddings):
|
| 761 |
-
self.sequence_head[-1] = new_embeddings
|
| 762 |
-
|
| 763 |
-
def forward(
|
| 764 |
-
self,
|
| 765 |
-
input_ids: Optional[torch.Tensor] = None,
|
| 766 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 767 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
| 768 |
-
labels: Optional[torch.Tensor] = None,
|
| 769 |
-
output_attentions: Optional[bool] = None,
|
| 770 |
-
output_hidden_states: Optional[bool] = None,
|
| 771 |
-
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
| 772 |
-
) -> ESMplusplusOutput:
|
| 773 |
-
"""Forward pass for masked language modeling.
|
| 774 |
-
|
| 775 |
-
Args:
|
| 776 |
-
input_ids: Input token IDs
|
| 777 |
-
attention_mask: Attention mask
|
| 778 |
-
inputs_embeds: Optional precomputed embeddings
|
| 779 |
-
labels: Optional labels for masked tokens
|
| 780 |
-
output_hidden_states: Whether to return all hidden states
|
| 781 |
-
output_attentions: Whether to return attention weights
|
| 782 |
-
|
| 783 |
-
Returns:
|
| 784 |
-
ESMplusplusOutput containing loss, logits, hidden states and attention weights
|
| 785 |
-
"""
|
| 786 |
-
if inputs_embeds is None:
|
| 787 |
-
x = self.embed(input_ids)
|
| 788 |
-
else:
|
| 789 |
-
x = inputs_embeds
|
| 790 |
-
output = self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
| 791 |
-
x = output.last_hidden_state
|
| 792 |
-
logits = self.sequence_head(x)
|
| 793 |
-
loss = None
|
| 794 |
-
if labels is not None:
|
| 795 |
-
loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1))
|
| 796 |
-
return ESMplusplusOutput(
|
| 797 |
-
loss=loss,
|
| 798 |
-
logits=logits,
|
| 799 |
-
last_hidden_state=x,
|
| 800 |
-
hidden_states=output.hidden_states,
|
| 801 |
-
attentions=output.attentions,
|
| 802 |
-
)
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
| 806 |
-
"""
|
| 807 |
-
ESM++ model for sequence classification.
|
| 808 |
-
Extends the base ESM++ model with a classification head.
|
| 809 |
-
"""
|
| 810 |
-
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
| 811 |
-
super().__init__(config, **kwargs)
|
| 812 |
-
self.config = config
|
| 813 |
-
self.num_labels = config.num_labels
|
| 814 |
-
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
|
| 815 |
-
# Large intermediate projections help with sequence classification tasks (*4)
|
| 816 |
-
self.mse = nn.MSELoss()
|
| 817 |
-
self.ce = nn.CrossEntropyLoss()
|
| 818 |
-
self.bce = nn.BCEWithLogitsLoss()
|
| 819 |
-
self.init_weights()
|
| 820 |
-
|
| 821 |
-
def forward(
|
| 822 |
-
self,
|
| 823 |
-
input_ids: Optional[torch.Tensor] = None,
|
| 824 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 825 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
| 826 |
-
labels: Optional[torch.Tensor] = None,
|
| 827 |
-
output_attentions: Optional[bool] = None,
|
| 828 |
-
output_hidden_states: Optional[bool] = None,
|
| 829 |
-
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
| 830 |
-
) -> ESMplusplusOutput:
|
| 831 |
-
"""Forward pass for sequence classification.
|
| 832 |
-
|
| 833 |
-
Args:
|
| 834 |
-
input_ids: Input token IDs
|
| 835 |
-
attention_mask: Attention mask
|
| 836 |
-
inputs_embeds: Optional precomputed embeddings
|
| 837 |
-
labels: Optional labels for classification
|
| 838 |
-
output_hidden_states: Whether to return all hidden states
|
| 839 |
-
output_attentions: Whether to return attention weights
|
| 840 |
-
|
| 841 |
-
Returns:
|
| 842 |
-
ESMplusplusOutput containing loss, logits, and hidden states
|
| 843 |
-
"""
|
| 844 |
-
output = super().forward(
|
| 845 |
-
input_ids=input_ids,
|
| 846 |
-
attention_mask=attention_mask,
|
| 847 |
-
inputs_embeds=inputs_embeds,
|
| 848 |
-
labels=None,
|
| 849 |
-
output_attentions=output_attentions,
|
| 850 |
-
output_hidden_states=output_hidden_states
|
| 851 |
-
)
|
| 852 |
-
x = output.last_hidden_state
|
| 853 |
-
cls_features = x[:, 0, :]
|
| 854 |
-
mean_features = self.mean_pooling(x, attention_mask)
|
| 855 |
-
# we include mean pooling features to help with early convergence, the cost of this is basically zero
|
| 856 |
-
features = torch.cat([cls_features, mean_features], dim=-1)
|
| 857 |
-
logits = self.classifier(features)
|
| 858 |
-
loss = None
|
| 859 |
-
if labels is not None:
|
| 860 |
-
labels = labels.to(logits.device)
|
| 861 |
-
if self.config.problem_type is None:
|
| 862 |
-
if self.num_labels == 1:
|
| 863 |
-
self.config.problem_type = "regression"
|
| 864 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 865 |
-
self.config.problem_type = "single_label_classification"
|
| 866 |
-
else:
|
| 867 |
-
self.config.problem_type = "multi_label_classification"
|
| 868 |
-
|
| 869 |
-
if self.config.problem_type == "regression":
|
| 870 |
-
if self.num_labels == 1:
|
| 871 |
-
loss = self.mse(logits.flatten(), labels.flatten())
|
| 872 |
-
else:
|
| 873 |
-
loss = self.mse(logits, labels)
|
| 874 |
-
elif self.config.problem_type == "single_label_classification":
|
| 875 |
-
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
|
| 876 |
-
elif self.config.problem_type == "multi_label_classification":
|
| 877 |
-
loss = self.bce(logits, labels)
|
| 878 |
-
return ESMplusplusOutput(
|
| 879 |
-
loss=loss,
|
| 880 |
-
logits=logits,
|
| 881 |
-
last_hidden_state=x,
|
| 882 |
-
hidden_states=output.hidden_states,
|
| 883 |
-
)
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
|
| 887 |
-
"""
|
| 888 |
-
ESM++ model for token classification.
|
| 889 |
-
Extends the base ESM++ model with a token classification head.
|
| 890 |
-
"""
|
| 891 |
-
def __init__(self, config: ESMplusplusConfig):
|
| 892 |
-
super().__init__(config)
|
| 893 |
-
self.config = config
|
| 894 |
-
self.num_labels = config.num_labels
|
| 895 |
-
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
|
| 896 |
-
# Large intermediate projections help with sequence classification tasks (*4)
|
| 897 |
-
self.loss_fct = nn.CrossEntropyLoss()
|
| 898 |
-
self.init_weights()
|
| 899 |
-
|
| 900 |
-
def forward(
|
| 901 |
-
self,
|
| 902 |
-
input_ids: Optional[torch.Tensor] = None,
|
| 903 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 904 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
| 905 |
-
labels: Optional[torch.Tensor] = None,
|
| 906 |
-
output_attentions: Optional[bool] = None,
|
| 907 |
-
output_hidden_states: Optional[bool] = None,
|
| 908 |
-
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
| 909 |
-
) -> ESMplusplusOutput:
|
| 910 |
-
"""Forward pass for token classification.
|
| 911 |
-
|
| 912 |
-
Args:
|
| 913 |
-
input_ids: Input token IDs
|
| 914 |
-
attention_mask: Attention mask
|
| 915 |
-
inputs_embeds: Optional precomputed embeddings
|
| 916 |
-
labels: Optional labels for token classification
|
| 917 |
-
output_hidden_states: Whether to return all hidden states
|
| 918 |
-
output_attentions: Whether to return attention weights
|
| 919 |
-
|
| 920 |
-
Returns:
|
| 921 |
-
ESMplusplusOutput containing loss, logits, and hidden states
|
| 922 |
-
"""
|
| 923 |
-
output = super().forward(
|
| 924 |
-
input_ids=input_ids,
|
| 925 |
-
attention_mask=attention_mask,
|
| 926 |
-
inputs_embeds=inputs_embeds,
|
| 927 |
-
labels=None,
|
| 928 |
-
output_attentions=output_attentions,
|
| 929 |
-
output_hidden_states=output_hidden_states
|
| 930 |
-
)
|
| 931 |
-
x = output.last_hidden_state
|
| 932 |
-
logits = self.classifier(x)
|
| 933 |
-
loss = None
|
| 934 |
-
if labels is not None:
|
| 935 |
-
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 936 |
-
return ESMplusplusOutput(
|
| 937 |
-
loss=loss,
|
| 938 |
-
logits=logits,
|
| 939 |
-
last_hidden_state=x,
|
| 940 |
-
hidden_states=output.hidden_states,
|
| 941 |
-
)
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
### Loading from EvolutionaryScale
|
| 945 |
-
@staticmethod
|
| 946 |
-
@cache
|
| 947 |
-
def data_root(model: str):
|
| 948 |
-
if "INFRA_PROVIDER" in os.environ:
|
| 949 |
-
return Path("")
|
| 950 |
-
# Try to download from hugginface if it doesn't exist
|
| 951 |
-
if model.startswith("esmc-300"):
|
| 952 |
-
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12"))
|
| 953 |
-
elif model.startswith("esmc-600"):
|
| 954 |
-
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12"))
|
| 955 |
-
else:
|
| 956 |
-
raise ValueError(f"{model=} is an invalid model name.")
|
| 957 |
-
return path
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
def ESMplusplus_300M(device: torch.device | str = "cpu"):
|
| 961 |
-
with torch.device(device):
|
| 962 |
-
config = ESMplusplusConfig(
|
| 963 |
-
hidden_size=960,
|
| 964 |
-
num_attention_heads=15,
|
| 965 |
-
num_hidden_layers=30,
|
| 966 |
-
)
|
| 967 |
-
model = ESMplusplusForMaskedLM(config)
|
| 968 |
-
state_dict = torch.load(
|
| 969 |
-
data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth",
|
| 970 |
-
map_location=device,
|
| 971 |
-
)
|
| 972 |
-
model.load_state_dict(state_dict)
|
| 973 |
-
return model
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
def ESMplusplus_600M(device: torch.device | str = "cpu"):
|
| 977 |
-
with torch.device(device):
|
| 978 |
-
config = ESMplusplusConfig(
|
| 979 |
-
hidden_size=1152,
|
| 980 |
-
num_attention_heads=18,
|
| 981 |
-
num_hidden_layers=36,
|
| 982 |
-
)
|
| 983 |
-
model = ESMplusplusForMaskedLM(config)
|
| 984 |
-
state_dict = torch.load(
|
| 985 |
-
data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth",
|
| 986 |
-
map_location=device,
|
| 987 |
-
)
|
| 988 |
-
model.load_state_dict(state_dict)
|
| 989 |
-
return model
|
| 990 |
-
|
| 991 |
-
|
| 992 |
-
### Tokenization
|
| 993 |
-
SEQUENCE_VOCAB = [
|
| 994 |
-
"<cls>", "<pad>", "<eos>", "<unk>",
|
| 995 |
-
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
|
| 996 |
-
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
|
| 997 |
-
"O", ".", "-", "|",
|
| 998 |
-
"<mask>",
|
| 999 |
-
]
|
| 1000 |
-
|
| 1001 |
-
class EsmSequenceTokenizer(PreTrainedTokenizerFast):
|
| 1002 |
-
model_input_names = ["input_ids", "attention_mask"]
|
| 1003 |
-
|
| 1004 |
-
def __init__(
|
| 1005 |
-
self,
|
| 1006 |
-
unk_token="<unk>",
|
| 1007 |
-
cls_token="<cls>",
|
| 1008 |
-
pad_token="<pad>",
|
| 1009 |
-
mask_token="<mask>",
|
| 1010 |
-
eos_token="<eos>",
|
| 1011 |
-
chain_break_token="|",
|
| 1012 |
-
**kwargs,
|
| 1013 |
-
):
|
| 1014 |
-
all_tokens = SEQUENCE_VOCAB
|
| 1015 |
-
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}
|
| 1016 |
-
|
| 1017 |
-
# a character-level tokenizer is the same as BPE with no token merges
|
| 1018 |
-
bpe = BPE(token_to_id, merges=[], unk_token=unk_token)
|
| 1019 |
-
tokenizer = Tokenizer(bpe)
|
| 1020 |
-
special_tokens = [
|
| 1021 |
-
cls_token,
|
| 1022 |
-
pad_token,
|
| 1023 |
-
mask_token,
|
| 1024 |
-
eos_token,
|
| 1025 |
-
chain_break_token,
|
| 1026 |
-
]
|
| 1027 |
-
self.cb_token = chain_break_token
|
| 1028 |
-
additional_special_tokens = [chain_break_token]
|
| 1029 |
-
|
| 1030 |
-
tokenizer.add_special_tokens(special_tokens)
|
| 1031 |
-
|
| 1032 |
-
# This is where we configure the automatic addition of special tokens when we call
|
| 1033 |
-
# tokenizer(text, add_special_tokens=True). Note that you can also configure how two
|
| 1034 |
-
# sequences are merged if you want.
|
| 1035 |
-
tokenizer.post_processor = TemplateProcessing( # type: ignore
|
| 1036 |
-
single="<cls> $A <eos>",
|
| 1037 |
-
special_tokens=[
|
| 1038 |
-
("<cls>", tokenizer.token_to_id("<cls>")),
|
| 1039 |
-
("<eos>", tokenizer.token_to_id("<eos>")),
|
| 1040 |
-
],
|
| 1041 |
-
)
|
| 1042 |
-
super().__init__(
|
| 1043 |
-
tokenizer_object=tokenizer,
|
| 1044 |
-
unk_token=unk_token,
|
| 1045 |
-
cls_token=cls_token,
|
| 1046 |
-
pad_token=pad_token,
|
| 1047 |
-
mask_token=mask_token,
|
| 1048 |
-
eos_token=eos_token,
|
| 1049 |
-
additional_special_tokens=additional_special_tokens,
|
| 1050 |
-
**kwargs,
|
| 1051 |
-
)
|
| 1052 |
-
|
| 1053 |
-
# These are a footgun, we never use the `bos` token anywhere so we're just overriding it here.
|
| 1054 |
-
@property
|
| 1055 |
-
def bos_token(self):
|
| 1056 |
-
return self.cls_token
|
| 1057 |
-
|
| 1058 |
-
@property
|
| 1059 |
-
def bos_token_id(self):
|
| 1060 |
-
return self.cls_token_id
|
| 1061 |
-
|
| 1062 |
-
@property
|
| 1063 |
-
def chain_break_token(self):
|
| 1064 |
-
return self.cb_token
|
| 1065 |
-
|
| 1066 |
-
@property
|
| 1067 |
-
def chain_break_token_id(self):
|
| 1068 |
-
return self.convert_tokens_to_ids(self.chain_break_token)
|
| 1069 |
-
|
| 1070 |
-
@property
|
| 1071 |
-
def all_token_ids(self):
|
| 1072 |
-
return list(range(self.vocab_size))
|
| 1073 |
-
|
| 1074 |
-
@property
|
| 1075 |
-
def special_token_ids(self):
|
| 1076 |
-
return self.all_special_ids
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
ESM++ model implementation.
|
| 3 |
+
|
| 4 |
+
ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility
|
| 5 |
+
The ESM Python package is not required
|
| 6 |
+
|
| 7 |
+
Modified from https://github.com/evolutionaryscale/esm
|
| 8 |
+
License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import math
|
| 12 |
+
import os
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
import torch.nn.functional as F
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from functools import cache, partial
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
from typing import Optional, Tuple, Union
|
| 20 |
+
from einops import rearrange, repeat
|
| 21 |
+
from huggingface_hub import snapshot_download
|
| 22 |
+
from tokenizers import Tokenizer
|
| 23 |
+
from tokenizers.models import BPE
|
| 24 |
+
from tokenizers.processors import TemplateProcessing
|
| 25 |
+
from torch.utils.data import Dataset, DataLoader
|
| 26 |
+
from tqdm.auto import tqdm
|
| 27 |
+
from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig
|
| 28 |
+
from transformers.modeling_outputs import ModelOutput
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class ESMplusplusConfig(PretrainedConfig):
|
| 32 |
+
"""Configuration class for ESM++ model.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
vocab_size: Size of the vocabulary
|
| 36 |
+
hidden_size: Dimension of hidden layers
|
| 37 |
+
num_attention_heads: Number of attention heads
|
| 38 |
+
num_hidden_layers: Number of transformer layers
|
| 39 |
+
num_labels: Number of output labels for classification
|
| 40 |
+
problem_type: Type of problem - regression, single/multi label classification
|
| 41 |
+
"""
|
| 42 |
+
model_type = "ESMplusplus"
|
| 43 |
+
def __init__(
|
| 44 |
+
self,
|
| 45 |
+
vocab_size: int = 64,
|
| 46 |
+
hidden_size: int = 960,
|
| 47 |
+
num_attention_heads: int = 15,
|
| 48 |
+
num_hidden_layers: int = 30,
|
| 49 |
+
num_labels: int = 2,
|
| 50 |
+
problem_type: str | None = None,
|
| 51 |
+
dropout: float = 0.0,
|
| 52 |
+
initializer_range: float = 0.02,
|
| 53 |
+
**kwargs,
|
| 54 |
+
):
|
| 55 |
+
super().__init__(**kwargs)
|
| 56 |
+
self.vocab_size = vocab_size
|
| 57 |
+
self.hidden_size = hidden_size
|
| 58 |
+
self.num_attention_heads = num_attention_heads
|
| 59 |
+
self.num_hidden_layers = num_hidden_layers
|
| 60 |
+
self.num_labels = num_labels
|
| 61 |
+
self.problem_type = problem_type
|
| 62 |
+
self.dropout = dropout
|
| 63 |
+
self.initializer_range = initializer_range
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
### Rotary Embeddings
|
| 67 |
+
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
|
| 68 |
+
"""Rotates half the hidden dims of the input."""
|
| 69 |
+
if not interleaved:
|
| 70 |
+
x1, x2 = x.chunk(2, dim=-1)
|
| 71 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 72 |
+
else:
|
| 73 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
| 74 |
+
return rearrange(
|
| 75 |
+
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def apply_rotary_emb_torch(
|
| 80 |
+
x: torch.Tensor,
|
| 81 |
+
cos: torch.Tensor,
|
| 82 |
+
sin: torch.Tensor,
|
| 83 |
+
interleaved: bool = False,
|
| 84 |
+
_inplace: bool = False,
|
| 85 |
+
) -> torch.Tensor:
|
| 86 |
+
"""Apply rotary embeddings to input based on cos and sin."""
|
| 87 |
+
ro_dim = cos.shape[-1] * 2
|
| 88 |
+
assert ro_dim <= x.shape[-1]
|
| 89 |
+
seqlen = x.size(1)
|
| 90 |
+
cos = cos[:seqlen]
|
| 91 |
+
sin = sin[:seqlen]
|
| 92 |
+
cos = repeat(cos, "s d -> s 1 (2 d)")
|
| 93 |
+
sin = repeat(sin, "s d -> s 1 (2 d)")
|
| 94 |
+
return torch.cat(
|
| 95 |
+
[
|
| 96 |
+
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
|
| 97 |
+
x[..., ro_dim:],
|
| 98 |
+
],
|
| 99 |
+
dim=-1,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 104 |
+
"""Rotary position embeddings.
|
| 105 |
+
|
| 106 |
+
Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding"
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
dim: Dimension of the embedding
|
| 110 |
+
base: Base for computing angular frequencies
|
| 111 |
+
interleaved: Whether to use interleaved rotations
|
| 112 |
+
scale_base: Base for scaling
|
| 113 |
+
scaling_factor: Factor for scaling positions
|
| 114 |
+
pos_idx_in_fp32: Whether to compute position indices in fp32
|
| 115 |
+
device: Computation device
|
| 116 |
+
"""
|
| 117 |
+
def __init__(
|
| 118 |
+
self,
|
| 119 |
+
dim: int,
|
| 120 |
+
base: float = 10000.0,
|
| 121 |
+
interleaved: bool = False,
|
| 122 |
+
scale_base: Optional[float] = None,
|
| 123 |
+
scaling_factor: float = 1.0,
|
| 124 |
+
pos_idx_in_fp32: bool = True,
|
| 125 |
+
device: Optional[torch.device] = None,
|
| 126 |
+
):
|
| 127 |
+
super().__init__()
|
| 128 |
+
self.dim = dim
|
| 129 |
+
self.base = float(base)
|
| 130 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 131 |
+
self.interleaved = interleaved
|
| 132 |
+
self.scale_base = scale_base
|
| 133 |
+
self.scaling_factor = scaling_factor
|
| 134 |
+
self.device = device
|
| 135 |
+
|
| 136 |
+
self._seq_len_cached = 0
|
| 137 |
+
self._cos_cached = None
|
| 138 |
+
self._sin_cached = None
|
| 139 |
+
self._cos_k_cached = None
|
| 140 |
+
self._sin_k_cached = None
|
| 141 |
+
self.reset_parameters()
|
| 142 |
+
|
| 143 |
+
def reset_parameters(self):
|
| 144 |
+
"""Reset the parameters of the embedding."""
|
| 145 |
+
inv_freq = self._compute_inv_freq(self.device)
|
| 146 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 147 |
+
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
|
| 148 |
+
scale = (
|
| 149 |
+
(arange + 0.4 * self.dim) / (1.4 * self.dim)
|
| 150 |
+
if self.scale_base is not None
|
| 151 |
+
else None
|
| 152 |
+
)
|
| 153 |
+
self.register_buffer("scale", scale)
|
| 154 |
+
|
| 155 |
+
def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor:
|
| 156 |
+
"""Compute inverse frequency bands."""
|
| 157 |
+
return 1 / (
|
| 158 |
+
self.base
|
| 159 |
+
** (
|
| 160 |
+
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
|
| 161 |
+
/ self.dim
|
| 162 |
+
)
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
| 166 |
+
"""Update the cached cosine and sine values."""
|
| 167 |
+
if (
|
| 168 |
+
seqlen > self._seq_len_cached
|
| 169 |
+
or self._cos_cached is None
|
| 170 |
+
or self._cos_cached.device != device
|
| 171 |
+
or self._cos_cached.dtype != dtype
|
| 172 |
+
or (self.training and self._cos_cached.is_inference())
|
| 173 |
+
):
|
| 174 |
+
self._seq_len_cached = seqlen
|
| 175 |
+
if self.pos_idx_in_fp32:
|
| 176 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 177 |
+
t /= self.scaling_factor
|
| 178 |
+
if self.inv_freq.dtype != torch.float32:
|
| 179 |
+
inv_freq = self.inv_freq.to(torch.float32)
|
| 180 |
+
else:
|
| 181 |
+
inv_freq = self.inv_freq
|
| 182 |
+
else:
|
| 183 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 184 |
+
t /= self.scaling_factor
|
| 185 |
+
inv_freq = self.inv_freq
|
| 186 |
+
freqs = torch.outer(t, inv_freq)
|
| 187 |
+
|
| 188 |
+
if self.scale is None:
|
| 189 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 190 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 191 |
+
else:
|
| 192 |
+
power = (
|
| 193 |
+
torch.arange(
|
| 194 |
+
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
| 195 |
+
)
|
| 196 |
+
- seqlen // 2
|
| 197 |
+
) / self.scale_base
|
| 198 |
+
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
| 199 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 200 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 201 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 202 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 203 |
+
|
| 204 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 205 |
+
"""Apply rotary embeddings to queries and keys.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
q: Query tensor of shape (batch, seqlen, nheads, headdim)
|
| 209 |
+
k: Key tensor of shape (batch, seqlen, nheads, headdim)
|
| 210 |
+
|
| 211 |
+
Returns:
|
| 212 |
+
Tuple of rotated query and key tensors
|
| 213 |
+
"""
|
| 214 |
+
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
|
| 215 |
+
assert self._cos_cached is not None
|
| 216 |
+
assert self._sin_cached is not None
|
| 217 |
+
if self.scale is None:
|
| 218 |
+
return (
|
| 219 |
+
apply_rotary_emb_torch(
|
| 220 |
+
q,
|
| 221 |
+
self._cos_cached,
|
| 222 |
+
self._sin_cached,
|
| 223 |
+
self.interleaved,
|
| 224 |
+
True, # inplace=True
|
| 225 |
+
),
|
| 226 |
+
apply_rotary_emb_torch(
|
| 227 |
+
k,
|
| 228 |
+
self._cos_cached,
|
| 229 |
+
self._sin_cached,
|
| 230 |
+
self.interleaved,
|
| 231 |
+
True, # inplace=True
|
| 232 |
+
),
|
| 233 |
+
) # type: ignore
|
| 234 |
+
else:
|
| 235 |
+
assert False
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
### Feedforward Network Components
|
| 239 |
+
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
|
| 240 |
+
"""Compute corrected dimension for SwiGLU."""
|
| 241 |
+
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class SwiGLU(nn.Module):
|
| 245 |
+
"""SwiGLU activation function."""
|
| 246 |
+
def __init__(self):
|
| 247 |
+
super(SwiGLU, self).__init__()
|
| 248 |
+
|
| 249 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 250 |
+
x1, x2 = x.chunk(2, dim=-1)
|
| 251 |
+
return F.silu(x1) * x2
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential:
|
| 255 |
+
"""Create SwiGLU feedforward network with layer normalization."""
|
| 256 |
+
return nn.Sequential(
|
| 257 |
+
nn.LayerNorm(d_model),
|
| 258 |
+
nn.Linear(
|
| 259 |
+
d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False
|
| 260 |
+
),
|
| 261 |
+
SwiGLU(),
|
| 262 |
+
nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False),
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
### Attention
|
| 267 |
+
class MultiHeadAttention(nn.Module):
|
| 268 |
+
"""Multi-head attention with rotary embeddings.
|
| 269 |
+
|
| 270 |
+
Args:
|
| 271 |
+
d_model: Model dimension
|
| 272 |
+
n_heads: Number of attention heads
|
| 273 |
+
"""
|
| 274 |
+
def __init__(self, d_model: int, n_heads: int):
|
| 275 |
+
super().__init__()
|
| 276 |
+
self.d_model = d_model
|
| 277 |
+
self.n_heads = n_heads
|
| 278 |
+
self.d_head = self.d_model // self.n_heads
|
| 279 |
+
self.layernorm_qkv = nn.Sequential(
|
| 280 |
+
nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False)
|
| 281 |
+
)
|
| 282 |
+
self.out_proj = nn.Linear(d_model, d_model, bias=False)
|
| 283 |
+
self.q_ln = nn.LayerNorm(d_model, bias=False)
|
| 284 |
+
self.k_ln = nn.LayerNorm(d_model, bias=False)
|
| 285 |
+
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
|
| 286 |
+
self.rotary = RotaryEmbedding(d_model // n_heads)
|
| 287 |
+
|
| 288 |
+
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 289 |
+
"""Apply rotary embeddings to query and key."""
|
| 290 |
+
q = q.unflatten(-1, (self.n_heads, self.d_head))
|
| 291 |
+
k = k.unflatten(-1, (self.n_heads, self.d_head))
|
| 292 |
+
q, k = self.rotary(q, k)
|
| 293 |
+
q = q.flatten(-2, -1)
|
| 294 |
+
k = k.flatten(-2, -1)
|
| 295 |
+
return q, k
|
| 296 |
+
|
| 297 |
+
def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 298 |
+
"""
|
| 299 |
+
Args:
|
| 300 |
+
x: Input tensor
|
| 301 |
+
attention_mask: Optional attention mask
|
| 302 |
+
output_attentions: Whether to return attention weights
|
| 303 |
+
|
| 304 |
+
Returns:
|
| 305 |
+
Output tensor after self attention, and optionally attention weights
|
| 306 |
+
"""
|
| 307 |
+
attn_weights = None
|
| 308 |
+
qkv_BLD3 = self.layernorm_qkv(x)
|
| 309 |
+
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
|
| 310 |
+
query_BLD, key_BLD = (
|
| 311 |
+
self.q_ln(query_BLD).to(query_BLD.dtype),
|
| 312 |
+
self.k_ln(key_BLD).to(query_BLD.dtype),
|
| 313 |
+
)
|
| 314 |
+
query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD)
|
| 315 |
+
query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD))
|
| 316 |
+
|
| 317 |
+
if output_attentions: # Manual attention computation
|
| 318 |
+
L, S = query_BLD.size(-2), key_BLD.size(-2)
|
| 319 |
+
scale = 1 / math.sqrt(query_BLD.size(-1))
|
| 320 |
+
attn_bias = torch.zeros(L, S, dtype=query_BLD.dtype, device=query_BLD.device)
|
| 321 |
+
if attention_mask is not None:
|
| 322 |
+
if attention_mask.dtype == torch.bool:
|
| 323 |
+
attention_mask.masked_fill_(attention_mask.logical_not(), float('-inf'))
|
| 324 |
+
else:
|
| 325 |
+
attn_bias += attention_mask
|
| 326 |
+
|
| 327 |
+
attn_weights = torch.matmul(query_BHLD, key_BHLD.transpose(-2, -1)) * scale
|
| 328 |
+
attn_weights += attn_bias
|
| 329 |
+
attn_weights = F.softmax(attn_weights, dim=-1)
|
| 330 |
+
context_BHLD = torch.matmul(attn_weights, value_BHLD)
|
| 331 |
+
else:
|
| 332 |
+
context_BHLD = F.scaled_dot_product_attention(
|
| 333 |
+
query_BHLD, key_BHLD, value_BHLD, attention_mask
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)")
|
| 337 |
+
output = self.out_proj(context_BLD)
|
| 338 |
+
return output, attn_weights
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
### Regression Head
|
| 342 |
+
def RegressionHead(d_model: int, output_dim: int, hidden_dim: Optional[int] = None) -> nn.Module:
|
| 343 |
+
"""Create a regression head with optional hidden dimension.
|
| 344 |
+
|
| 345 |
+
Args:
|
| 346 |
+
d_model: Input dimension
|
| 347 |
+
output_dim: Output dimension
|
| 348 |
+
hidden_dim: Optional hidden dimension (defaults to d_model)
|
| 349 |
+
"""
|
| 350 |
+
hidden_dim = hidden_dim if hidden_dim is not None else d_model
|
| 351 |
+
return nn.Sequential(
|
| 352 |
+
nn.Linear(d_model, hidden_dim),
|
| 353 |
+
nn.GELU(),
|
| 354 |
+
nn.LayerNorm(hidden_dim),
|
| 355 |
+
nn.Linear(hidden_dim, output_dim),
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
### Transformer Block
|
| 360 |
+
class UnifiedTransformerBlock(nn.Module):
|
| 361 |
+
"""Transformer block with attention and feedforward layers.
|
| 362 |
+
|
| 363 |
+
Args:
|
| 364 |
+
d_model: Model dimension
|
| 365 |
+
n_heads: Number of attention heads
|
| 366 |
+
residue_scaling_factor: Factor for scaling residual connections
|
| 367 |
+
expansion_ratio: Expansion ratio for feedforward network
|
| 368 |
+
"""
|
| 369 |
+
def __init__(
|
| 370 |
+
self,
|
| 371 |
+
d_model: int,
|
| 372 |
+
n_heads: int,
|
| 373 |
+
residue_scaling_factor: float = 1,
|
| 374 |
+
expansion_ratio: float = 8 / 3,
|
| 375 |
+
dropout: float = 0.0,
|
| 376 |
+
):
|
| 377 |
+
super().__init__()
|
| 378 |
+
self.attn = MultiHeadAttention(d_model, n_heads)
|
| 379 |
+
self.ffn = swiglu_ln_ffn(d_model, expansion_ratio)
|
| 380 |
+
self.scaling_factor = residue_scaling_factor
|
| 381 |
+
self.dropout = nn.Dropout(dropout)
|
| 382 |
+
|
| 383 |
+
def forward(
|
| 384 |
+
self,
|
| 385 |
+
x: torch.Tensor,
|
| 386 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 387 |
+
output_attentions: bool = False,
|
| 388 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 389 |
+
"""
|
| 390 |
+
Args:
|
| 391 |
+
x: Input tensor
|
| 392 |
+
attention_mask: Optional attention mask
|
| 393 |
+
output_attentions: Whether to return attention weights
|
| 394 |
+
|
| 395 |
+
Returns:
|
| 396 |
+
Output tensor after transformer block, and optionally attention weights
|
| 397 |
+
"""
|
| 398 |
+
attn_output, attn_weights = self.attn(x, attention_mask, output_attentions)
|
| 399 |
+
x = x + self.dropout(attn_output) / self.scaling_factor
|
| 400 |
+
x = x + self.dropout(self.ffn(x)) / self.scaling_factor
|
| 401 |
+
return x, attn_weights
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
### Model Outputs
|
| 405 |
+
@dataclass
|
| 406 |
+
class TransformerOutput(ModelOutput):
|
| 407 |
+
"""Output type for transformer encoder."""
|
| 408 |
+
last_hidden_state: Optional[torch.Tensor] = None
|
| 409 |
+
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
| 410 |
+
attentions: Optional[Tuple[torch.Tensor]] = None
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
@dataclass
|
| 414 |
+
class ESMplusplusOutput(ModelOutput):
|
| 415 |
+
"""Output type for ESM++ models."""
|
| 416 |
+
loss: Optional[torch.Tensor] = None
|
| 417 |
+
logits: Optional[torch.Tensor] = None
|
| 418 |
+
last_hidden_state: Optional[torch.Tensor] = None
|
| 419 |
+
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
| 420 |
+
attentions: Optional[Tuple[torch.Tensor]] = None
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
### Transformer Stack
|
| 424 |
+
class TransformerStack(nn.Module):
|
| 425 |
+
"""Stack of transformer blocks.
|
| 426 |
+
|
| 427 |
+
Args:
|
| 428 |
+
d_model: Model dimension
|
| 429 |
+
n_heads: Number of attention heads
|
| 430 |
+
n_layers: Number of transformer layers
|
| 431 |
+
dropout: Dropout rate
|
| 432 |
+
"""
|
| 433 |
+
def __init__(
|
| 434 |
+
self,
|
| 435 |
+
d_model: int,
|
| 436 |
+
n_heads: int,
|
| 437 |
+
n_layers: int,
|
| 438 |
+
dropout: float = 0.0,
|
| 439 |
+
):
|
| 440 |
+
super().__init__()
|
| 441 |
+
self.blocks = nn.ModuleList(
|
| 442 |
+
[
|
| 443 |
+
UnifiedTransformerBlock(
|
| 444 |
+
d_model,
|
| 445 |
+
n_heads,
|
| 446 |
+
residue_scaling_factor=math.sqrt(n_layers / 36),
|
| 447 |
+
dropout=dropout,
|
| 448 |
+
)
|
| 449 |
+
for i in range(n_layers)
|
| 450 |
+
]
|
| 451 |
+
)
|
| 452 |
+
self.norm = nn.LayerNorm(d_model, bias=False)
|
| 453 |
+
self.gradient_checkpointing = False
|
| 454 |
+
|
| 455 |
+
def forward(
|
| 456 |
+
self,
|
| 457 |
+
x: torch.Tensor,
|
| 458 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 459 |
+
output_hidden_states: bool = False,
|
| 460 |
+
output_attentions: bool = False,
|
| 461 |
+
) -> TransformerOutput:
|
| 462 |
+
"""
|
| 463 |
+
Args:
|
| 464 |
+
x: Input tensor
|
| 465 |
+
attention_mask: Optional attention mask
|
| 466 |
+
output_hidden_states: Whether to return all hidden states
|
| 467 |
+
output_attentions: Whether to return attention weights
|
| 468 |
+
|
| 469 |
+
Returns:
|
| 470 |
+
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
| 471 |
+
"""
|
| 472 |
+
batch_size, seq_len, _ = x.shape
|
| 473 |
+
hidden_states = () if output_hidden_states else None
|
| 474 |
+
attentions = () if output_attentions else None
|
| 475 |
+
|
| 476 |
+
if attention_mask is not None:
|
| 477 |
+
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
|
| 478 |
+
|
| 479 |
+
for block in self.blocks:
|
| 480 |
+
if self.gradient_checkpointing and self.training:
|
| 481 |
+
x, attn_weights = self._gradient_checkpointing_func(
|
| 482 |
+
block.__call__,
|
| 483 |
+
x,
|
| 484 |
+
attention_mask,
|
| 485 |
+
output_attentions,
|
| 486 |
+
)
|
| 487 |
+
else:
|
| 488 |
+
x, attn_weights = block(x, attention_mask, output_attentions)
|
| 489 |
+
|
| 490 |
+
if attentions is not None:
|
| 491 |
+
attentions += (attn_weights,)
|
| 492 |
+
|
| 493 |
+
if output_hidden_states:
|
| 494 |
+
assert hidden_states is not None
|
| 495 |
+
hidden_states += (x,)
|
| 496 |
+
|
| 497 |
+
return TransformerOutput(
|
| 498 |
+
last_hidden_state=self.norm(x),
|
| 499 |
+
hidden_states=hidden_states,
|
| 500 |
+
attentions=attentions
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
### Dataset for Embedding
|
| 505 |
+
class ProteinDataset(Dataset):
|
| 506 |
+
"""Simple dataset for protein sequences."""
|
| 507 |
+
def __init__(self, sequences: list[str]):
|
| 508 |
+
self.sequences = sequences
|
| 509 |
+
|
| 510 |
+
def __len__(self) -> int:
|
| 511 |
+
return len(self.sequences)
|
| 512 |
+
|
| 513 |
+
def __getitem__(self, idx: int) -> str:
|
| 514 |
+
return self.sequences[idx]
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
class PreTrainedESMplusplusModel(PreTrainedModel):
|
| 518 |
+
"""
|
| 519 |
+
init weights for ESM++ models
|
| 520 |
+
"""
|
| 521 |
+
config_class = ESMplusplusConfig
|
| 522 |
+
base_model_prefix = "esm++"
|
| 523 |
+
supports_gradient_checkpointing = True
|
| 524 |
+
|
| 525 |
+
def _init_weights(self, module):
|
| 526 |
+
"""Initialize the weights"""
|
| 527 |
+
if isinstance(module, nn.Linear):
|
| 528 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 529 |
+
if module.bias is not None:
|
| 530 |
+
module.bias.data.zero_()
|
| 531 |
+
elif isinstance(module, nn.Embedding):
|
| 532 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 533 |
+
if module.padding_idx is not None:
|
| 534 |
+
module.weight.data[module.padding_idx].zero_()
|
| 535 |
+
elif isinstance(module, nn.LayerNorm):
|
| 536 |
+
module.bias.data.zero_()
|
| 537 |
+
module.weight.data.fill_(1.0)
|
| 538 |
+
|
| 539 |
+
@classmethod
|
| 540 |
+
def from_pretrained_esm(cls, model_name: str):
|
| 541 |
+
"""Load a pretrained ESM++ model."""
|
| 542 |
+
if '300' in model_name:
|
| 543 |
+
return ESMplusplus_300M()
|
| 544 |
+
elif '600' in model_name:
|
| 545 |
+
return ESMplusplus_600M()
|
| 546 |
+
else:
|
| 547 |
+
raise ValueError(f"Invalid model name: {model_name}")
|
| 548 |
+
|
| 549 |
+
@property
|
| 550 |
+
def device(self) -> torch.device:
|
| 551 |
+
"""Get the device of the model."""
|
| 552 |
+
return next(self.parameters()).device
|
| 553 |
+
|
| 554 |
+
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 555 |
+
"""Apply mean pooling to sequence outputs."""
|
| 556 |
+
if attention_mask is None:
|
| 557 |
+
return x.mean(dim=1)
|
| 558 |
+
else:
|
| 559 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
| 560 |
+
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
| 561 |
+
|
| 562 |
+
def max_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 563 |
+
"""Apply max pooling to sequence outputs."""
|
| 564 |
+
if attention_mask is None:
|
| 565 |
+
return x.max(dim=1).values
|
| 566 |
+
else:
|
| 567 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
| 568 |
+
return (x * attention_mask).max(dim=1).values
|
| 569 |
+
|
| 570 |
+
def cls_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 571 |
+
"""Apply cls pooling to sequence outputs."""
|
| 572 |
+
return x[:, 0, :]
|
| 573 |
+
|
| 574 |
+
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
|
| 575 |
+
"""Collate function for batching sequences."""
|
| 576 |
+
return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)
|
| 577 |
+
|
| 578 |
+
def _read_sequences_from_db(self, db_path: str) -> set[str]:
|
| 579 |
+
"""Read sequences from SQLite database."""
|
| 580 |
+
import sqlite3
|
| 581 |
+
sequences = []
|
| 582 |
+
with sqlite3.connect(db_path) as conn:
|
| 583 |
+
c = conn.cursor()
|
| 584 |
+
c.execute("SELECT sequence FROM embeddings")
|
| 585 |
+
while True:
|
| 586 |
+
row = c.fetchone()
|
| 587 |
+
if row is None:
|
| 588 |
+
break
|
| 589 |
+
sequences.append(row[0])
|
| 590 |
+
return set(sequences)
|
| 591 |
+
|
| 592 |
+
def embed_dataset(
|
| 593 |
+
self,
|
| 594 |
+
sequences: list[str],
|
| 595 |
+
batch_size: int = 2,
|
| 596 |
+
max_len: int = 512,
|
| 597 |
+
full_embeddings: bool = False,
|
| 598 |
+
full_precision: bool = False,
|
| 599 |
+
pooling_type: str = 'mean',
|
| 600 |
+
num_workers: int = 0,
|
| 601 |
+
sql: bool = False,
|
| 602 |
+
sql_db_path: str = 'embeddings.db',
|
| 603 |
+
) -> Optional[dict[str, torch.Tensor]]:
|
| 604 |
+
"""Embed a dataset of protein sequences.
|
| 605 |
+
|
| 606 |
+
Args:
|
| 607 |
+
sequences: List of protein sequences
|
| 608 |
+
batch_size: Batch size for processing
|
| 609 |
+
max_len: Maximum sequence length
|
| 610 |
+
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)
|
| 611 |
+
full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage
|
| 612 |
+
pooling_type: Type of pooling ('mean' or 'cls')
|
| 613 |
+
num_workers: Number of workers for data loading, 0 for the main process
|
| 614 |
+
sql: Whether to store embeddings in SQLite database - will be stored in float32
|
| 615 |
+
sql_db_path: Path to SQLite database
|
| 616 |
+
|
| 617 |
+
Returns:
|
| 618 |
+
Dictionary mapping sequences to embeddings, or None if sql=True
|
| 619 |
+
"""
|
| 620 |
+
sequences = list(set([seq[:max_len] for seq in sequences]))
|
| 621 |
+
sequences = sorted(sequences, key=len, reverse=True)
|
| 622 |
+
dataset = ProteinDataset(sequences)
|
| 623 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn)
|
| 624 |
+
device = self.device
|
| 625 |
+
|
| 626 |
+
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 627 |
+
if full_embeddings:
|
| 628 |
+
return residue_embeddings
|
| 629 |
+
elif pooling_type == 'mean':
|
| 630 |
+
return self.mean_pooling(residue_embeddings, attention_mask)
|
| 631 |
+
elif pooling_type == 'max':
|
| 632 |
+
return self.max_pooling(residue_embeddings, attention_mask)
|
| 633 |
+
elif pooling_type == 'cls':
|
| 634 |
+
return self.cls_pooling(residue_embeddings, attention_mask)
|
| 635 |
+
else:
|
| 636 |
+
raise ValueError(f"Invalid pooling type: {pooling_type}")
|
| 637 |
+
|
| 638 |
+
if sql:
|
| 639 |
+
import sqlite3
|
| 640 |
+
conn = sqlite3.connect(sql_db_path)
|
| 641 |
+
c = conn.cursor()
|
| 642 |
+
c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
|
| 643 |
+
already_embedded = self._read_sequences_from_db(sql_db_path)
|
| 644 |
+
to_embed = [seq for seq in sequences if seq not in already_embedded]
|
| 645 |
+
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
|
| 646 |
+
print(f"Embedding {len(to_embed)} new sequences")
|
| 647 |
+
if len(to_embed) > 0:
|
| 648 |
+
with torch.no_grad():
|
| 649 |
+
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
| 650 |
+
seqs = to_embed[i * batch_size:(i + 1) * batch_size]
|
| 651 |
+
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
| 652 |
+
x = self.embed(input_ids)
|
| 653 |
+
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach().float() # required for sql
|
| 654 |
+
embeddings = get_embeddings(residue_embeddings, attention_mask)
|
| 655 |
+
|
| 656 |
+
for seq, emb, mask in zip(seqs, embeddings, attention_mask):
|
| 657 |
+
if full_embeddings:
|
| 658 |
+
emb = emb[mask.bool()]
|
| 659 |
+
c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)",
|
| 660 |
+
(seq, emb.cpu().numpy().tobytes()))
|
| 661 |
+
|
| 662 |
+
if (i + 1) % 100 == 0:
|
| 663 |
+
conn.commit()
|
| 664 |
+
|
| 665 |
+
conn.commit()
|
| 666 |
+
conn.close()
|
| 667 |
+
return None
|
| 668 |
+
|
| 669 |
+
embeddings_dict = {}
|
| 670 |
+
with torch.no_grad():
|
| 671 |
+
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
| 672 |
+
seqs = sequences[i * batch_size:(i + 1) * batch_size]
|
| 673 |
+
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
| 674 |
+
x = self.embed(input_ids)
|
| 675 |
+
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach()
|
| 676 |
+
if full_precision:
|
| 677 |
+
residue_embeddings = residue_embeddings.float()
|
| 678 |
+
embeddings = get_embeddings(residue_embeddings, attention_mask).cpu()
|
| 679 |
+
for seq, emb in zip(seqs, embeddings):
|
| 680 |
+
embeddings_dict[seq] = emb
|
| 681 |
+
|
| 682 |
+
return embeddings_dict
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
### ESM++ Models
|
| 686 |
+
class ESMplusplusModel(PreTrainedESMplusplusModel):
|
| 687 |
+
"""
|
| 688 |
+
ESM++ model. transformer model with no heads
|
| 689 |
+
"""
|
| 690 |
+
config_class = ESMplusplusConfig
|
| 691 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
| 692 |
+
super().__init__(config, **kwargs)
|
| 693 |
+
self.config = config
|
| 694 |
+
self.vocab_size = config.vocab_size
|
| 695 |
+
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
| 696 |
+
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
| 697 |
+
self.tokenizer = EsmSequenceTokenizer()
|
| 698 |
+
self.init_weights()
|
| 699 |
+
|
| 700 |
+
def get_input_embeddings(self):
|
| 701 |
+
return self.embed
|
| 702 |
+
|
| 703 |
+
def set_input_embeddings(self, value):
|
| 704 |
+
self.embed = value
|
| 705 |
+
|
| 706 |
+
def forward(
|
| 707 |
+
self,
|
| 708 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 709 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 710 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 711 |
+
output_attentions: Optional[bool] = None,
|
| 712 |
+
output_hidden_states: Optional[bool] = None,
|
| 713 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
| 714 |
+
) -> TransformerOutput:
|
| 715 |
+
"""Forward pass for masked language modeling.
|
| 716 |
+
|
| 717 |
+
Args:
|
| 718 |
+
input_ids: Input token IDs
|
| 719 |
+
attention_mask: Attention mask
|
| 720 |
+
inputs_embeds: Optional precomputed embeddings
|
| 721 |
+
output_hidden_states: Whether to return all hidden states
|
| 722 |
+
output_attentions: Whether to return attention weights
|
| 723 |
+
|
| 724 |
+
Returns:
|
| 725 |
+
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
| 726 |
+
"""
|
| 727 |
+
if inputs_embeds is None:
|
| 728 |
+
x = self.embed(input_ids)
|
| 729 |
+
else:
|
| 730 |
+
x = inputs_embeds
|
| 731 |
+
return self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
class ESMplusplusForMaskedLM(PreTrainedESMplusplusModel):
|
| 735 |
+
"""
|
| 736 |
+
ESM++ model for masked language modeling.
|
| 737 |
+
Implements the base ESM++ architecture with a masked language modeling head.
|
| 738 |
+
"""
|
| 739 |
+
config_class = ESMplusplusConfig
|
| 740 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
| 741 |
+
super().__init__(config, **kwargs)
|
| 742 |
+
self.config = config
|
| 743 |
+
self.vocab_size = config.vocab_size
|
| 744 |
+
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
| 745 |
+
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
| 746 |
+
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
|
| 747 |
+
self.ce_loss = nn.CrossEntropyLoss()
|
| 748 |
+
self.tokenizer = EsmSequenceTokenizer()
|
| 749 |
+
self.init_weights()
|
| 750 |
+
|
| 751 |
+
def get_input_embeddings(self):
|
| 752 |
+
return self.embed
|
| 753 |
+
|
| 754 |
+
def set_input_embeddings(self, value):
|
| 755 |
+
self.embed = value
|
| 756 |
+
|
| 757 |
+
def get_output_embeddings(self):
|
| 758 |
+
return self.sequence_head[-1]
|
| 759 |
+
|
| 760 |
+
def set_output_embeddings(self, new_embeddings):
|
| 761 |
+
self.sequence_head[-1] = new_embeddings
|
| 762 |
+
|
| 763 |
+
def forward(
|
| 764 |
+
self,
|
| 765 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 766 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 767 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 768 |
+
labels: Optional[torch.Tensor] = None,
|
| 769 |
+
output_attentions: Optional[bool] = None,
|
| 770 |
+
output_hidden_states: Optional[bool] = None,
|
| 771 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
| 772 |
+
) -> ESMplusplusOutput:
|
| 773 |
+
"""Forward pass for masked language modeling.
|
| 774 |
+
|
| 775 |
+
Args:
|
| 776 |
+
input_ids: Input token IDs
|
| 777 |
+
attention_mask: Attention mask
|
| 778 |
+
inputs_embeds: Optional precomputed embeddings
|
| 779 |
+
labels: Optional labels for masked tokens
|
| 780 |
+
output_hidden_states: Whether to return all hidden states
|
| 781 |
+
output_attentions: Whether to return attention weights
|
| 782 |
+
|
| 783 |
+
Returns:
|
| 784 |
+
ESMplusplusOutput containing loss, logits, hidden states and attention weights
|
| 785 |
+
"""
|
| 786 |
+
if inputs_embeds is None:
|
| 787 |
+
x = self.embed(input_ids)
|
| 788 |
+
else:
|
| 789 |
+
x = inputs_embeds
|
| 790 |
+
output = self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
| 791 |
+
x = output.last_hidden_state
|
| 792 |
+
logits = self.sequence_head(x)
|
| 793 |
+
loss = None
|
| 794 |
+
if labels is not None:
|
| 795 |
+
loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1))
|
| 796 |
+
return ESMplusplusOutput(
|
| 797 |
+
loss=loss,
|
| 798 |
+
logits=logits,
|
| 799 |
+
last_hidden_state=x,
|
| 800 |
+
hidden_states=output.hidden_states,
|
| 801 |
+
attentions=output.attentions,
|
| 802 |
+
)
|
| 803 |
+
|
| 804 |
+
|
| 805 |
+
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
| 806 |
+
"""
|
| 807 |
+
ESM++ model for sequence classification.
|
| 808 |
+
Extends the base ESM++ model with a classification head.
|
| 809 |
+
"""
|
| 810 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
| 811 |
+
super().__init__(config, **kwargs)
|
| 812 |
+
self.config = config
|
| 813 |
+
self.num_labels = config.num_labels
|
| 814 |
+
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
|
| 815 |
+
# Large intermediate projections help with sequence classification tasks (*4)
|
| 816 |
+
self.mse = nn.MSELoss()
|
| 817 |
+
self.ce = nn.CrossEntropyLoss()
|
| 818 |
+
self.bce = nn.BCEWithLogitsLoss()
|
| 819 |
+
self.init_weights()
|
| 820 |
+
|
| 821 |
+
def forward(
|
| 822 |
+
self,
|
| 823 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 824 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 825 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 826 |
+
labels: Optional[torch.Tensor] = None,
|
| 827 |
+
output_attentions: Optional[bool] = None,
|
| 828 |
+
output_hidden_states: Optional[bool] = None,
|
| 829 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
| 830 |
+
) -> ESMplusplusOutput:
|
| 831 |
+
"""Forward pass for sequence classification.
|
| 832 |
+
|
| 833 |
+
Args:
|
| 834 |
+
input_ids: Input token IDs
|
| 835 |
+
attention_mask: Attention mask
|
| 836 |
+
inputs_embeds: Optional precomputed embeddings
|
| 837 |
+
labels: Optional labels for classification
|
| 838 |
+
output_hidden_states: Whether to return all hidden states
|
| 839 |
+
output_attentions: Whether to return attention weights
|
| 840 |
+
|
| 841 |
+
Returns:
|
| 842 |
+
ESMplusplusOutput containing loss, logits, and hidden states
|
| 843 |
+
"""
|
| 844 |
+
output = super().forward(
|
| 845 |
+
input_ids=input_ids,
|
| 846 |
+
attention_mask=attention_mask,
|
| 847 |
+
inputs_embeds=inputs_embeds,
|
| 848 |
+
labels=None,
|
| 849 |
+
output_attentions=output_attentions,
|
| 850 |
+
output_hidden_states=output_hidden_states
|
| 851 |
+
)
|
| 852 |
+
x = output.last_hidden_state
|
| 853 |
+
cls_features = x[:, 0, :]
|
| 854 |
+
mean_features = self.mean_pooling(x, attention_mask)
|
| 855 |
+
# we include mean pooling features to help with early convergence, the cost of this is basically zero
|
| 856 |
+
features = torch.cat([cls_features, mean_features], dim=-1)
|
| 857 |
+
logits = self.classifier(features)
|
| 858 |
+
loss = None
|
| 859 |
+
if labels is not None:
|
| 860 |
+
labels = labels.to(logits.device)
|
| 861 |
+
if self.config.problem_type is None:
|
| 862 |
+
if self.num_labels == 1:
|
| 863 |
+
self.config.problem_type = "regression"
|
| 864 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 865 |
+
self.config.problem_type = "single_label_classification"
|
| 866 |
+
else:
|
| 867 |
+
self.config.problem_type = "multi_label_classification"
|
| 868 |
+
|
| 869 |
+
if self.config.problem_type == "regression":
|
| 870 |
+
if self.num_labels == 1:
|
| 871 |
+
loss = self.mse(logits.flatten(), labels.flatten())
|
| 872 |
+
else:
|
| 873 |
+
loss = self.mse(logits, labels)
|
| 874 |
+
elif self.config.problem_type == "single_label_classification":
|
| 875 |
+
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
|
| 876 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 877 |
+
loss = self.bce(logits, labels)
|
| 878 |
+
return ESMplusplusOutput(
|
| 879 |
+
loss=loss,
|
| 880 |
+
logits=logits,
|
| 881 |
+
last_hidden_state=x,
|
| 882 |
+
hidden_states=output.hidden_states,
|
| 883 |
+
)
|
| 884 |
+
|
| 885 |
+
|
| 886 |
+
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
|
| 887 |
+
"""
|
| 888 |
+
ESM++ model for token classification.
|
| 889 |
+
Extends the base ESM++ model with a token classification head.
|
| 890 |
+
"""
|
| 891 |
+
def __init__(self, config: ESMplusplusConfig):
|
| 892 |
+
super().__init__(config)
|
| 893 |
+
self.config = config
|
| 894 |
+
self.num_labels = config.num_labels
|
| 895 |
+
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
|
| 896 |
+
# Large intermediate projections help with sequence classification tasks (*4)
|
| 897 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
| 898 |
+
self.init_weights()
|
| 899 |
+
|
| 900 |
+
def forward(
|
| 901 |
+
self,
|
| 902 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 903 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 904 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 905 |
+
labels: Optional[torch.Tensor] = None,
|
| 906 |
+
output_attentions: Optional[bool] = None,
|
| 907 |
+
output_hidden_states: Optional[bool] = None,
|
| 908 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
| 909 |
+
) -> ESMplusplusOutput:
|
| 910 |
+
"""Forward pass for token classification.
|
| 911 |
+
|
| 912 |
+
Args:
|
| 913 |
+
input_ids: Input token IDs
|
| 914 |
+
attention_mask: Attention mask
|
| 915 |
+
inputs_embeds: Optional precomputed embeddings
|
| 916 |
+
labels: Optional labels for token classification
|
| 917 |
+
output_hidden_states: Whether to return all hidden states
|
| 918 |
+
output_attentions: Whether to return attention weights
|
| 919 |
+
|
| 920 |
+
Returns:
|
| 921 |
+
ESMplusplusOutput containing loss, logits, and hidden states
|
| 922 |
+
"""
|
| 923 |
+
output = super().forward(
|
| 924 |
+
input_ids=input_ids,
|
| 925 |
+
attention_mask=attention_mask,
|
| 926 |
+
inputs_embeds=inputs_embeds,
|
| 927 |
+
labels=None,
|
| 928 |
+
output_attentions=output_attentions,
|
| 929 |
+
output_hidden_states=output_hidden_states
|
| 930 |
+
)
|
| 931 |
+
x = output.last_hidden_state
|
| 932 |
+
logits = self.classifier(x)
|
| 933 |
+
loss = None
|
| 934 |
+
if labels is not None:
|
| 935 |
+
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 936 |
+
return ESMplusplusOutput(
|
| 937 |
+
loss=loss,
|
| 938 |
+
logits=logits,
|
| 939 |
+
last_hidden_state=x,
|
| 940 |
+
hidden_states=output.hidden_states,
|
| 941 |
+
)
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
### Loading from EvolutionaryScale
|
| 945 |
+
@staticmethod
|
| 946 |
+
@cache
|
| 947 |
+
def data_root(model: str):
|
| 948 |
+
if "INFRA_PROVIDER" in os.environ:
|
| 949 |
+
return Path("")
|
| 950 |
+
# Try to download from hugginface if it doesn't exist
|
| 951 |
+
if model.startswith("esmc-300"):
|
| 952 |
+
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12"))
|
| 953 |
+
elif model.startswith("esmc-600"):
|
| 954 |
+
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12"))
|
| 955 |
+
else:
|
| 956 |
+
raise ValueError(f"{model=} is an invalid model name.")
|
| 957 |
+
return path
|
| 958 |
+
|
| 959 |
+
|
| 960 |
+
def ESMplusplus_300M(device: torch.device | str = "cpu"):
|
| 961 |
+
with torch.device(device):
|
| 962 |
+
config = ESMplusplusConfig(
|
| 963 |
+
hidden_size=960,
|
| 964 |
+
num_attention_heads=15,
|
| 965 |
+
num_hidden_layers=30,
|
| 966 |
+
)
|
| 967 |
+
model = ESMplusplusForMaskedLM(config)
|
| 968 |
+
state_dict = torch.load(
|
| 969 |
+
data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth",
|
| 970 |
+
map_location=device,
|
| 971 |
+
)
|
| 972 |
+
model.load_state_dict(state_dict)
|
| 973 |
+
return model
|
| 974 |
+
|
| 975 |
+
|
| 976 |
+
def ESMplusplus_600M(device: torch.device | str = "cpu"):
|
| 977 |
+
with torch.device(device):
|
| 978 |
+
config = ESMplusplusConfig(
|
| 979 |
+
hidden_size=1152,
|
| 980 |
+
num_attention_heads=18,
|
| 981 |
+
num_hidden_layers=36,
|
| 982 |
+
)
|
| 983 |
+
model = ESMplusplusForMaskedLM(config)
|
| 984 |
+
state_dict = torch.load(
|
| 985 |
+
data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth",
|
| 986 |
+
map_location=device,
|
| 987 |
+
)
|
| 988 |
+
model.load_state_dict(state_dict)
|
| 989 |
+
return model
|
| 990 |
+
|
| 991 |
+
|
| 992 |
+
### Tokenization
|
| 993 |
+
SEQUENCE_VOCAB = [
|
| 994 |
+
"<cls>", "<pad>", "<eos>", "<unk>",
|
| 995 |
+
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
|
| 996 |
+
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
|
| 997 |
+
"O", ".", "-", "|",
|
| 998 |
+
"<mask>",
|
| 999 |
+
]
|
| 1000 |
+
|
| 1001 |
+
class EsmSequenceTokenizer(PreTrainedTokenizerFast):
|
| 1002 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 1003 |
+
|
| 1004 |
+
def __init__(
|
| 1005 |
+
self,
|
| 1006 |
+
unk_token="<unk>",
|
| 1007 |
+
cls_token="<cls>",
|
| 1008 |
+
pad_token="<pad>",
|
| 1009 |
+
mask_token="<mask>",
|
| 1010 |
+
eos_token="<eos>",
|
| 1011 |
+
chain_break_token="|",
|
| 1012 |
+
**kwargs,
|
| 1013 |
+
):
|
| 1014 |
+
all_tokens = SEQUENCE_VOCAB
|
| 1015 |
+
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}
|
| 1016 |
+
|
| 1017 |
+
# a character-level tokenizer is the same as BPE with no token merges
|
| 1018 |
+
bpe = BPE(token_to_id, merges=[], unk_token=unk_token)
|
| 1019 |
+
tokenizer = Tokenizer(bpe)
|
| 1020 |
+
special_tokens = [
|
| 1021 |
+
cls_token,
|
| 1022 |
+
pad_token,
|
| 1023 |
+
mask_token,
|
| 1024 |
+
eos_token,
|
| 1025 |
+
chain_break_token,
|
| 1026 |
+
]
|
| 1027 |
+
self.cb_token = chain_break_token
|
| 1028 |
+
additional_special_tokens = [chain_break_token]
|
| 1029 |
+
|
| 1030 |
+
tokenizer.add_special_tokens(special_tokens)
|
| 1031 |
+
|
| 1032 |
+
# This is where we configure the automatic addition of special tokens when we call
|
| 1033 |
+
# tokenizer(text, add_special_tokens=True). Note that you can also configure how two
|
| 1034 |
+
# sequences are merged if you want.
|
| 1035 |
+
tokenizer.post_processor = TemplateProcessing( # type: ignore
|
| 1036 |
+
single="<cls> $A <eos>",
|
| 1037 |
+
special_tokens=[
|
| 1038 |
+
("<cls>", tokenizer.token_to_id("<cls>")),
|
| 1039 |
+
("<eos>", tokenizer.token_to_id("<eos>")),
|
| 1040 |
+
],
|
| 1041 |
+
)
|
| 1042 |
+
super().__init__(
|
| 1043 |
+
tokenizer_object=tokenizer,
|
| 1044 |
+
unk_token=unk_token,
|
| 1045 |
+
cls_token=cls_token,
|
| 1046 |
+
pad_token=pad_token,
|
| 1047 |
+
mask_token=mask_token,
|
| 1048 |
+
eos_token=eos_token,
|
| 1049 |
+
additional_special_tokens=additional_special_tokens,
|
| 1050 |
+
**kwargs,
|
| 1051 |
+
)
|
| 1052 |
+
|
| 1053 |
+
# These are a footgun, we never use the `bos` token anywhere so we're just overriding it here.
|
| 1054 |
+
@property
|
| 1055 |
+
def bos_token(self):
|
| 1056 |
+
return self.cls_token
|
| 1057 |
+
|
| 1058 |
+
@property
|
| 1059 |
+
def bos_token_id(self):
|
| 1060 |
+
return self.cls_token_id
|
| 1061 |
+
|
| 1062 |
+
@property
|
| 1063 |
+
def chain_break_token(self):
|
| 1064 |
+
return self.cb_token
|
| 1065 |
+
|
| 1066 |
+
@property
|
| 1067 |
+
def chain_break_token_id(self):
|
| 1068 |
+
return self.convert_tokens_to_ids(self.chain_break_token)
|
| 1069 |
+
|
| 1070 |
+
@property
|
| 1071 |
+
def all_token_ids(self):
|
| 1072 |
+
return list(range(self.vocab_size))
|
| 1073 |
+
|
| 1074 |
+
@property
|
| 1075 |
+
def special_token_ids(self):
|
| 1076 |
+
return self.all_special_ids
|