RichardErkhov commited on
Commit
db3fd60
·
verified ·
1 Parent(s): 68cda63

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +172 -0
README.md ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Mistral-7B-ReMax-v0.1 - bnb 8bits
11
+ - Model creator: https://huggingface.co/ziniuli/
12
+ - Original model: https://huggingface.co/ziniuli/Mistral-7B-ReMax-v0.1/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ language:
20
+ - en
21
+ license: apache-2.0
22
+ library_name: transformers
23
+
24
+ ---
25
+
26
+ # Model Card for Mistral-7B-ReMax-v0.1
27
+
28
+
29
+ The Mistral-7B-ReMax-v0.1 Large Language Model (LLM) is a Reinforcement Learning from Human Preference (RLHF) fine-tuned version of [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
30
+
31
+ The fine-tuning algorithm is ReMax and please find algorithm details in the [paper](https://arxiv.org/abs/2310.10505).
32
+
33
+ ## Model Details
34
+
35
+ - Developed by: Ziniu Li
36
+ - License: apache-2.0
37
+ - Finetuned from [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
38
+
39
+ ## Uses
40
+
41
+ ### Direct Use
42
+
43
+ The instruction format is the same as Mistral-7B-Instruct-v0.2. Specifically, the prompt should be surrounded by \[INST\] and \[/INST\] tokens.
44
+
45
+ ```
46
+ text = "<s>[INST] What is your favourite condiment? [/INST]"
47
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
48
+ "[INST] Do you have mayonnaise recipes? [/INST]"
49
+ ```
50
+
51
+
52
+ ## Training Details
53
+
54
+ ### Training Data
55
+
56
+ 10k prompts from the [lmsys-chat-1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) dataset. Note that no responses from this dataset are used in training.
57
+
58
+ ### Reward Model
59
+
60
+ The reward model is based on [UltraRM-13b](https://huggingface.co/openbmb/UltraRM-13b).
61
+
62
+ **Important**: UltraRM-13b uses a different instruction template with Mistral-7B. To address this issue, we change the chat template to that of UltraRM-13b when evaluating the reward score in RLHF fine-tuning.
63
+
64
+
65
+ ### Training Procedure
66
+
67
+ The training algorithm is ReMax, whose details are available in the [paper](https://arxiv.org/abs/2310.10505), and implementations are available in the [repository](https://github.com/liziniu/ReMax).
68
+
69
+
70
+ ### Training Hyperparameters
71
+
72
+ ```
73
+ max_prompt_seq: 384
74
+ max_answer_seq: 384
75
+ learning_rate: 5e-7
76
+ num_train_epochs: 1
77
+ kl_penalty: full_step
78
+ kl_ctl: 0.1
79
+ reward_clip_value: 1.0
80
+ temperature for sampling: 0.7
81
+ top_p for sampling: 0.9
82
+ ```
83
+
84
+
85
+ ## Evaluation
86
+
87
+
88
+ ### Chat1M
89
+
90
+
91
+ Since we fine-tune Mistral-7B-Instruct-v0.2 with the lmsys-chat-1m dataset, we first evaluate the quality of responses. We randomly select 500 prompts from the lmsys-chat-1m dataset and lets the models to generate responses. Then, we let GPT-4 to evaluate the binary win rate. The average win-rate of Mistral-7B-ReMax-v0.1 is 57.8%.
92
+
93
+ | | Mistral-7B-ReMax-v0.1 Wins | Mistral-7B-ReMax-v0.1 Wins |
94
+ | ------------------------ | -------------------------- | -------------------------- |
95
+ | Mistral-7B-Instruct-v0.2 | 289 | 211 |
96
+
97
+ Samples of responses are provided below.
98
+
99
+ ```
100
+ ==================Instruction================
101
+ 你好
102
+ ==================Mistral-7B-Instruct-v0.2================
103
+ 你好!我是一位帮助您解答问题的机器人。如果您有任何问题,请告诉我,我会尽力回答。
104
+
105
+ 你好(Hello)是中文语言中的一个常用词语,常用于问候或表示亲和,意思是“你好,你很好”。
106
+
107
+ 在我帮助您之前,我想先问一下,您是否知道什么是机器学习?机器学习是人工智能领域中的一种技术,它允许计算机自动学习和改进其行为,以便从数据中提取出有价值的信息,并使计算机能够做出更智能的决策。
108
+
109
+ 如果您已经熟悉机器学习,那么我可以帮助您深入探讨相关主题,如神经网络、支持向量机、决策树等。但是,如果您对机器学习不太熟悉,我可以简单地解释它的基本原理,以及它在现实生活中的应用。
110
+
111
+ 请告诉我您的需求,我会尽力满足您的期望。
112
+
113
+ 再次问候您:你好!
114
+ ==================Mistral-7B-ReMax-v0.1================
115
+ 好的,欢迎使用我的帮助!(Hello, welcome to use my help!)
116
+
117
+ 是的,我可以以中文回答你的问题,或者帮你完成一些简单的任务。(Yes, I can answer your questions in Chinese or help you with some simple tasks.)
118
+
119
+ 请问有什么特定的问题需要我帮忙呢?(What specific question do you need my help with?)
120
+
121
+ 或者,你可以告诉我什么方面我可以提供帮助。(Or you can tell me which area I can provide help in.)
122
+
123
+ 希望我能帮到你!(I hope I can help you!)
124
+ ```
125
+
126
+
127
+ ### AlpacaEval
128
+
129
+ [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) provides 805 test questions that the model has not been trained on. We provide the evaluation results below:
130
+
131
+ | | AlpacaEval | AlpacaEval 2 | Response Length |
132
+ | ------------------------ | ---------- | ------------ | --------------- |
133
+ | Mistral-7B-Instruct-v0.2 | 92.78 | 14.72 | 1676 |
134
+ | Mistral-7B-ReMax-v0.1 | 94.40 | 16.00 | 1478 |
135
+ | LLaMa2 Chat 7B | 71.37 | 4.96 | 1479 |
136
+ | LLaMa2 Chat 70B | 92.66 | 13.87 | 1790 |
137
+ | GPT-4 | 95.28 | 23.58 | 2049 |
138
+
139
+ Samples of responses are provided below
140
+
141
+ ```
142
+ ==================Instruction================
143
+ Marie is at the music store for a store day. She bought two $50 combos. Then, for $25 she bought two t-shirts for $5 each and five hoodies for $2 each. Then, she bought sneakers for $8 each. How much did she spend total?
144
+ ==================Mistral-7B-Instruct-v0.2================
145
+ Marie bought 2 combos at $50 each, so that's $100. She bought 2 t-shirts at $5 each, which is $10. She bought 5 hoodies at $2 each, which is $10. The sneakers cost $8. So Marie spent a total of $118. ($100 + $10 + $8 = $118)
146
+ ==================Mistral-7B-ReMax-v0.1================
147
+ Marie bought two combos at $50 each, so that's $100. She bought two t-shirts for $5 each, which totals $10. She bought five hoodies for $2 each, so that's $10. The sneakers cost $8.
148
+
149
+ So Marie spent $100 + $10 + $10 + $8 = $128 in total.
150
+ ```
151
+
152
+ ## Limitations
153
+
154
+ The Mistral-7B-ReMax-v0.1 model demonstrates that the optimization algorithm ReMax is effective. This model shares the same limitations as the Mistral-7B-Instruct-v0.2 model. In particular, it does not have any moderation mechanisms.
155
+
156
+ ## Citation
157
+
158
+
159
+ **BibTeX:**
160
+
161
+
162
+ ```
163
+ @article{li2023remax,
164
+ title={Remax: A simple, effective, and efficient method for aligning large language models},
165
+ author={Li, Ziniu and Xu, Tian and Zhang, Yushun and Yu, Yang and Sun, Ruoyu and Luo, Zhi-Quan},
166
+ journal={arXiv preprint arXiv:2310.10505},
167
+ year={2023}
168
+ }
169
+ ```
170
+
171
+
172
+