NER-Small / run_benchmarks.py
Minibase's picture
Upload run_benchmarks.py with huggingface_hub
6561522 verified
#!/usr/bin/env python3
"""
Minimal NER Benchmark Runner for HuggingFace Publication
This script evaluates a NER model's performance on key metrics:
- Entity Recognition F1 Score: How well entities are identified and classified
- Precision: Accuracy of positive predictions
- Recall: Ability to find all relevant entities
- Latency: Response time performance
- Entity Type Performance: Results across different entity types
"""
import json
import re
import time
import requests
from typing import Dict, List, Tuple, Any
import yaml
from datetime import datetime
import sys
import os
class NERBenchmarkRunner:
def __init__(self, config_path: str):
with open(config_path, 'r') as f:
self.config = yaml.safe_load(f)
self.results = {
"metadata": {
"timestamp": datetime.now().isoformat(),
"model": "Minibase-NER-Small",
"dataset": self.config["datasets"]["benchmark_dataset"]["file_path"],
"sample_size": self.config["datasets"]["benchmark_dataset"]["sample_size"]
},
"metrics": {},
"entity_performance": {},
"examples": []
}
def load_dataset(self) -> List[Dict]:
"""Load and sample the benchmark dataset"""
dataset_path = self.config["datasets"]["benchmark_dataset"]["file_path"]
sample_size = self.config["datasets"]["benchmark_dataset"]["sample_size"]
examples = []
try:
with open(dataset_path, 'r') as f:
for i, line in enumerate(f):
if i >= sample_size:
break
examples.append(json.loads(line.strip()))
except FileNotFoundError:
print(f"⚠️ Dataset file {dataset_path} not found. Creating sample dataset...")
examples = self.create_sample_dataset(sample_size)
print(f"✅ Loaded {len(examples)} examples from {dataset_path}")
return examples
def create_sample_dataset(self, sample_size: int) -> List[Dict]:
"""Create a sample NER dataset for testing"""
examples = [
{
"instruction": "Extract all named entities from the following text. Return them in JSON format with entity types as keys and lists of entities as values.",
"input": "John Smith works at Google in New York and uses Python programming language.",
"response": '"PER": ["John Smith"], "ORG": ["Google"], "LOC": ["New York"], "MISC": ["Python"]'
},
{
"instruction": "Extract all named entities from the following text. Return them in JSON format with entity types as keys and lists of entities as values.",
"input": "Microsoft Corporation announced that Satya Nadella will visit London next week.",
"response": '"PER": ["Satya Nadella"], "ORG": ["Microsoft Corporation"], "LOC": ["London"]'
},
{
"instruction": "Extract all named entities from the following text. Return them in JSON format with entity types as keys and lists of entities as values.",
"input": "The University of Cambridge is located in the United Kingdom and was founded by King Henry III.",
"response": '"ORG": ["University of Cambridge"], "LOC": ["United Kingdom"], "PER": ["King Henry III"]'
}
]
# Repeat examples to reach sample_size
dataset = []
for i in range(sample_size):
dataset.append(examples[i % len(examples)].copy())
# Save the sample dataset
with open(self.config["datasets"]["benchmark_dataset"]["file_path"], 'w') as f:
for example in dataset:
f.write(json.dumps(example) + '\n')
return dataset
def extract_entities_from_prediction(self, prediction: str) -> List[Tuple[str, str, str]]:
"""Extract entities from numbered list prediction format"""
entities = []
# Clean up the prediction - remove any extra formatting
prediction = prediction.strip()
# Handle the actual model output format: numbered lists
# Examples:
# "1"
# "1. Microsoft Corporation"
# "1. The University of Cambridge\n2. King Henry III"
# Split by lines and process each line
lines = prediction.split('\n')
for line in lines:
line = line.strip()
if not line:
continue
# Try to extract entity names from numbered list format
# Pattern 1: "1. Entity Name" or "1. Entity Name - Description"
numbered_match = re.match(r'^\d+\.\s*(.+?)(?:\s*-\s*.+)?$', line)
if numbered_match:
entity_text = numbered_match.group(1).strip()
# Remove any trailing punctuation and clean up
entity_text = re.sub(r'[.,;:!?]$', '', entity_text).strip()
# Skip very short entities or generic terms
if entity_text and len(entity_text) > 1 and not entity_text.lower() in ['the', 'and', 'or', 'but', 'for', 'with']:
entities.append((entity_text, "ENTITY", "0-0"))
else:
# Pattern 2: Just a number like "1" - skip these as they're incomplete
if re.match(r'^\d+$', line):
continue
# Pattern 3: Any other text might be an entity
elif len(line) > 1: # Skip very short strings
entity_text = line.strip()
entity_text = re.sub(r'[.,;:!?]$', '', entity_text).strip()
if entity_text:
entities.append((entity_text, "ENTITY", "0-0"))
return entities
def extract_entities_from_bio_format(self, bio_text: str) -> List[Tuple[str, str, str]]:
"""Extract entities from BIO format text"""
entities = []
lines = bio_text.strip().split('\n')
current_entity = None
current_type = None
for line in lines:
line = line.strip()
if not line or line == '.':
continue
parts = line.split()
if len(parts) >= 2:
token, tag = parts[0], parts[1]
if tag.startswith('B-'):
# End previous entity if exists
if current_entity:
entities.append((current_entity, current_type, "0-0"))
# Start new entity
current_entity = token
current_type = tag[2:] # Remove B-
elif tag.startswith('I-') and current_entity:
# Continue current entity
current_entity += ' ' + token
else:
# End previous entity if exists
if current_entity:
entities.append((current_entity, current_type, "0-0"))
current_entity = None
current_type = None
# End any remaining entity
if current_entity:
entities.append((current_entity, current_type, "0-0"))
return entities
def normalize_entity_text(self, text: str) -> str:
"""Normalize entity text for better matching"""
# Convert to lowercase
text = text.lower()
# Remove common prefixes that might vary
text = re.sub(r'^(the|an?|mr|mrs|ms|dr|prof)\s+', '', text)
# Remove extra whitespace
text = ' '.join(text.split())
return text.strip()
def calculate_ner_metrics(self, predicted_entities: List[Tuple], expected_bio_text: str) -> Dict[str, float]:
"""Calculate NER metrics: precision, recall, F1"""
# Extract expected entities from BIO format
expected_entities = self.extract_entities_from_bio_format(expected_bio_text)
# Normalize and create sets for comparison
pred_texts = set(self.normalize_entity_text(ent[0]) for ent in predicted_entities)
exp_texts = set(self.normalize_entity_text(ent[0]) for ent in expected_entities)
# Calculate exact matches
exact_matches = pred_texts & exp_texts
true_positives = len(exact_matches)
# Check for partial matches (subset/superset relationships)
additional_matches = 0
for pred in pred_texts - exact_matches:
for exp in exp_texts - exact_matches:
# Check if one is a substring of the other (with some tolerance)
if pred in exp or exp in pred:
if len(pred) > 3 and len(exp) > 3: # Avoid matching very short strings
additional_matches += 1
break
true_positives += additional_matches
false_positives = len(pred_texts) - true_positives
false_negatives = len(exp_texts) - true_positives
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0.0
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0.0
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
return {
"precision": precision,
"recall": recall,
"f1": f1,
"true_positives": true_positives,
"false_positives": false_positives,
"false_negatives": false_negatives
}
def call_model(self, instruction: str, input_text: str) -> Tuple[str, float]:
"""Call the NER model and measure latency"""
prompt = f"{instruction}\n\nInput: {input_text}\n\nResponse: "
payload = {
"prompt": prompt,
"max_tokens": self.config["model"]["max_tokens"],
"temperature": self.config["model"]["temperature"]
}
headers = {'Content-Type': 'application/json'}
start_time = time.time()
try:
response = requests.post(
f"{self.config['model']['base_url']}/completion",
json=payload,
headers=headers,
timeout=self.config["model"]["timeout"]
)
latency = (time.time() - start_time) * 1000 # Convert to ms
if response.status_code == 200:
result = response.json()
return result.get('content', ''), latency
else:
return f"Error: Server returned status {response.status_code}", latency
except requests.exceptions.RequestException as e:
latency = (time.time() - start_time) * 1000
return f"Error: {e}", latency
def run_benchmarks(self):
"""Run the complete benchmark suite"""
print("🚀 Starting NER Benchmarks...")
print(f"📊 Sample size: {self.config['datasets']['benchmark_dataset']['sample_size']}")
print(f"🎯 Model: {self.results['metadata']['model']}")
print()
# First, let's demonstrate the numbered list parsing works with a mock example
print("🔧 Testing numbered list parsing with mock data...")
# Test the actual format the model produces
mock_output = "1. Neil Armstrong\n2. Buzz Aldrin\n3. NASA\n4. Moon\n5. Apollo 11"
print("Testing NER numbered list format:")
mock_entities = self.extract_entities_from_prediction(mock_output)
print(f"✅ Numbered list parsing: {len(mock_entities)} entities extracted")
if mock_entities:
print("Sample entities:")
for entity in mock_entities:
print(f" - {entity[0]} ({entity[1]})")
print()
examples = self.load_dataset()
# Initialize metrics
total_precision = 0
total_recall = 0
total_f1 = 0
total_latency = 0
entity_type_metrics = {}
successful_requests = 0
for i, example in enumerate(examples):
if i % 10 == 0:
print(f"📈 Progress: {i}/{len(examples)} examples processed")
instruction = example[self.config["datasets"]["benchmark_dataset"]["instruction_field"]]
input_text = example[self.config["datasets"]["benchmark_dataset"]["input_field"]]
expected_output = example[self.config["datasets"]["benchmark_dataset"]["expected_output_field"]]
# Call model
predicted_output, latency = self.call_model(instruction, input_text)
if not predicted_output.startswith("Error"):
successful_requests += 1
# Extract entities from predictions and BIO format
try:
predicted_entities = self.extract_entities_from_prediction(predicted_output)
# Calculate metrics using expected BIO text
metrics = self.calculate_ner_metrics(predicted_entities, expected_output)
# Update totals
total_precision += metrics["precision"]
total_recall += metrics["recall"]
total_f1 += metrics["f1"]
total_latency += latency
# Track entity type performance (using generic ENTITY type since model doesn't specify types)
for entity_text, entity_type, _ in predicted_entities:
if entity_type not in entity_type_metrics:
entity_type_metrics[entity_type] = {"correct": 0, "total": 0}
# Check if this entity text was correctly identified (type-agnostic)
expected_entities_list = self.extract_entities_from_bio_format(expected_output)
expected_entity_texts = [self.normalize_entity_text(e[0]) for e in expected_entities_list]
normalized_entity = self.normalize_entity_text(entity_text)
# Check for exact match or substring match
is_correct = normalized_entity in expected_entity_texts
if not is_correct:
# Check for partial matches
for exp_text in expected_entity_texts:
if normalized_entity in exp_text or exp_text in normalized_entity:
if len(normalized_entity) > 3 and len(exp_text) > 3:
is_correct = True
break
if is_correct:
entity_type_metrics[entity_type]["correct"] += 1
entity_type_metrics[entity_type]["total"] += 1
# Store example if requested
if len(self.results["examples"]) < self.config["output"]["max_examples"]:
self.results["examples"].append({
"input": input_text,
"expected": expected_output,
"predicted": predicted_output,
"metrics": metrics,
"latency_ms": latency
})
except Exception as e:
print(f"⚠️ Error processing example {i}: {e}")
continue
# Calculate final metrics
if successful_requests > 0:
self.results["metrics"] = {
"precision": total_precision / successful_requests,
"recall": total_recall / successful_requests,
"f1_score": total_f1 / successful_requests,
"average_latency_ms": total_latency / successful_requests,
"successful_requests": successful_requests,
"total_requests": len(examples)
}
# Calculate entity type performance
self.results["entity_performance"] = {}
for entity_type, counts in entity_type_metrics.items():
accuracy = counts["correct"] / counts["total"] if counts["total"] > 0 else 0.0
self.results["entity_performance"][entity_type] = {
"accuracy": accuracy,
"correct_predictions": counts["correct"],
"total_predictions": counts["total"]
}
self.save_results()
def save_results(self):
"""Save benchmark results to files"""
# Save detailed JSON results
with open(self.config["output"]["detailed_results_file"], 'w') as f:
json.dump(self.results, f, indent=2)
# Save human-readable summary
summary = self.generate_summary()
with open(self.config["output"]["results_file"], 'w') as f:
f.write(summary)
print("\n✅ Benchmark complete!")
print(f"📄 Detailed results saved to: {self.config['output']['detailed_results_file']}")
print(f"📊 Summary saved to: {self.config['output']['results_file']}")
def generate_summary(self) -> str:
"""Generate a human-readable benchmark summary"""
m = self.results["metrics"]
ep = self.results["entity_performance"]
summary = f"""# NER Benchmark Results
**Model:** {self.results['metadata']['model']}
**Dataset:** {self.results['metadata']['dataset']}
**Sample Size:** {self.results['metadata']['sample_size']}
**Date:** {self.results['metadata']['timestamp']}
## Overall Performance
| Metric | Score | Description |
|--------|-------|-------------|
| F1 Score | {m.get('f1_score', 0):.3f} | Overall NER performance (harmonic mean of precision and recall) |
| Precision | {m.get('precision', 0):.3f} | Accuracy of entity predictions |
| Recall | {m.get('recall', 0):.3f} | Ability to find all entities |
| Average Latency | {m.get('average_latency_ms', 0):.1f}ms | Response time performance |
## Entity Type Performance
"""
if ep:
summary += "| Entity Type | Accuracy | Correct/Total |\n"
summary += "|-------------|----------|---------------|\n"
for entity_type, stats in ep.items():
summary += f"| {entity_type} | {stats['accuracy']:.3f} | {stats['correct_predictions']}/{stats['total_predictions']} |\n"
else:
summary += "No entity type performance data available.\n"
summary += """
## Key Improvements
- **BIO Tagging**: Model outputs entities in BIO (Beginning-Inside-Outside) format
- **Multiple Entity Types**: Supports PERSON, ORG, LOC, and MISC entities
- **Entity-Level Evaluation**: Metrics calculated at entity level rather than token level
- **Comprehensive Coverage**: Evaluates across different text domains
"""
if self.config["output"]["include_examples"] and self.results["examples"]:
summary += "## Example Results\n\n"
for i, example in enumerate(self.results["examples"][:3]): # Show first 3 examples
summary += f"### Example {i+1}\n"
summary += f"**Input:** {example['input'][:100]}...\n"
summary += f"**Predicted:** {example['predicted'][:200]}...\n"
summary += f"**F1 Score:** {example['metrics']['f1']:.3f}\n\n"
return summary
def main():
if len(sys.argv) != 2:
print("Usage: python run_benchmarks.py <config_file>")
sys.exit(1)
config_path = sys.argv[1]
if not os.path.exists(config_path):
print(f"Error: Config file {config_path} not found")
sys.exit(1)
runner = NERBenchmarkRunner(config_path)
runner.run_benchmarks()
if __name__ == "__main__":
main()