Tiny MiniCPM-o-2_6 Model (6MB INT4 Quantized)
This is a tiny random version of the MiniCPM-o-2_6 model, optimized for testing purposes.
Model Details
- Model Size: ~6-7MB (INT4 quantized)
- Original Model: MiniCPM-o-2_6
- Quantization: INT4 pipeline quantization
- Vocabulary Size: 50,000 tokens (reduced from 151,700)
- Format: OpenVINO IR
Model Architecture
- Maintains MiniCPMO class compatibility
- Full INT4 quantization for all components:
- Language model
- Vision embeddings
- Resampler
Usage
With Optimum-Intel
from optimum.intel import OVModelForVisualCausalLM
from transformers import AutoProcessor
model = OVModelForVisualCausalLM.from_pretrained(
"M-Ziyo/tiny-random-MiniCPM-o-2_6-6mb",
export=False, # Already quantized
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(
"optimum-intel-internal-testing/tiny-random-MiniCPM-o-2_6",
trust_remote_code=True
)
Validation
python validate_tiny_minicpm.py --model-path M-Ziyo/tiny-random-MiniCPM-o-2_6-6mb
Files
- OpenVINO IR files (
.xml,.bin) for all model components - Configuration files (
config.json,openvino_config.json) - Python model files for custom architecture
- Processor files
Notes
- This is a test model with random weights
- Processor should be loaded from the original model:
optimum-intel-internal-testing/tiny-random-MiniCPM-o-2_6 - Compatible with Optimum-Intel test suite
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support