Falah commited on
Commit
c3a01fe
·
verified ·
1 Parent(s): d2ab7b0

Add README.md file with inference example

Browse files
Files changed (1) hide show
  1. README.md +93 -202
README.md CHANGED
@@ -1,206 +1,97 @@
1
  ---
2
- base_model: mistralai/Mistral-7B-Instruct-v0.2
3
- library_name: peft
4
- pipeline_tag: text-generation
5
  tags:
6
- - base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2
7
- - lora
 
 
 
 
 
 
 
8
  ---
9
 
10
- # Model Card for Model ID
11
-
12
- <!-- Provide a quick summary of what the model is/does. -->
13
-
14
-
15
-
16
- ## Model Details
17
-
18
- ### Model Description
19
-
20
- <!-- Provide a longer summary of what this model is. -->
21
-
22
-
23
-
24
- - **Developed by:** [More Information Needed]
25
- - **Funded by [optional]:** [More Information Needed]
26
- - **Shared by [optional]:** [More Information Needed]
27
- - **Model type:** [More Information Needed]
28
- - **Language(s) (NLP):** [More Information Needed]
29
- - **License:** [More Information Needed]
30
- - **Finetuned from model [optional]:** [More Information Needed]
31
-
32
- ### Model Sources [optional]
33
-
34
- <!-- Provide the basic links for the model. -->
35
-
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
-
40
- ## Uses
41
-
42
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
-
44
- ### Direct Use
45
-
46
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
-
48
- [More Information Needed]
49
-
50
- ### Downstream Use [optional]
51
-
52
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
-
54
- [More Information Needed]
55
-
56
- ### Out-of-Scope Use
57
-
58
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
-
60
- [More Information Needed]
61
-
62
- ## Bias, Risks, and Limitations
63
-
64
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
-
66
- [More Information Needed]
67
-
68
- ### Recommendations
69
-
70
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
-
72
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
-
74
- ## How to Get Started with the Model
75
-
76
- Use the code below to get started with the model.
77
-
78
- [More Information Needed]
79
-
80
- ## Training Details
81
-
82
- ### Training Data
83
-
84
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
-
86
- [More Information Needed]
87
-
88
- ### Training Procedure
89
-
90
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
-
92
- #### Preprocessing [optional]
93
-
94
- [More Information Needed]
95
-
96
-
97
- #### Training Hyperparameters
98
-
99
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
-
101
- #### Speeds, Sizes, Times [optional]
102
-
103
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
-
105
- [More Information Needed]
106
-
107
- ## Evaluation
108
-
109
- <!-- This section describes the evaluation protocols and provides the results. -->
110
-
111
- ### Testing Data, Factors & Metrics
112
-
113
- #### Testing Data
114
-
115
- <!-- This should link to a Dataset Card if possible. -->
116
-
117
- [More Information Needed]
118
-
119
- #### Factors
120
-
121
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Metrics
126
-
127
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
-
129
- [More Information Needed]
130
-
131
- ### Results
132
-
133
- [More Information Needed]
134
-
135
- #### Summary
136
-
137
-
138
-
139
- ## Model Examination [optional]
140
-
141
- <!-- Relevant interpretability work for the model goes here -->
142
-
143
- [More Information Needed]
144
-
145
- ## Environmental Impact
146
-
147
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
-
149
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
-
151
- - **Hardware Type:** [More Information Needed]
152
- - **Hours used:** [More Information Needed]
153
- - **Cloud Provider:** [More Information Needed]
154
- - **Compute Region:** [More Information Needed]
155
- - **Carbon Emitted:** [More Information Needed]
156
-
157
- ## Technical Specifications [optional]
158
-
159
- ### Model Architecture and Objective
160
-
161
- [More Information Needed]
162
-
163
- ### Compute Infrastructure
164
-
165
- [More Information Needed]
166
-
167
- #### Hardware
168
-
169
- [More Information Needed]
170
-
171
- #### Software
172
-
173
- [More Information Needed]
174
-
175
- ## Citation [optional]
176
-
177
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
-
179
- **BibTeX:**
180
-
181
- [More Information Needed]
182
-
183
- **APA:**
184
-
185
- [More Information Needed]
186
-
187
- ## Glossary [optional]
188
-
189
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
-
191
- [More Information Needed]
192
-
193
- ## More Information [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Authors [optional]
198
-
199
- [More Information Needed]
200
-
201
- ## Model Card Contact
202
-
203
- [More Information Needed]
204
- ### Framework versions
205
-
206
- - PEFT 0.17.0
 
1
  ---
 
 
 
2
  tags:
3
+ - text-generation
4
+ - transformers
5
+ - peft
6
+ - qlora
7
+ - bitsandbytes
8
+ - mistral
9
+ - mistral-7b
10
+ - fine-tune
11
+ license: apache-2.0
12
  ---
13
 
14
+ # my-qlora-mistral7b-instruct
15
+
16
+ This is a **QLoRA fine-tuned** version of the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model.
17
+ It was fine-tuned using **Low-Rank Adaptation (LoRA)** in 4-bit precision for efficiency on consumer GPUs.
18
+
19
+ ## 🚀 Model Details
20
+ - **Base model**: mistralai/Mistral-7B-Instruct-v0.2
21
+ - **Fine-tuning method**: QLoRA with PEFT
22
+ - **Quantization**: 4-bit (bitsandbytes)
23
+ - **Task**: Instruction following / conversational AI
24
+ - **Dataset**: Custom instruction-response pairs
25
+ - **Training environment**: Google Colab Pro (T4 / A100 GPU)
26
+
27
+ ## 📦 How to Use
28
+ ```python
29
+ # First, make sure you have the necessary libraries installed:
30
+ # pip install transformers peft bitsandbytes accelerate
31
+
32
+ import torch
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig
34
+ from peft import PeftModel
35
+ from accelerate import infer_auto_device_map, dispatch_model
36
+
37
+ fine_tuned_model_id = "Falah/my-qlora-mistral7b-instruct"
38
+ base_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
39
+
40
+ print("Loading tokenizer...")
41
+ tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_id)
42
+
43
+ print("Loading base model with quantization...")
44
+ bnb_config = BitsAndBytesConfig(
45
+ load_in_4bit=True,
46
+ bnb_4bit_use_double_quant=True,
47
+ bnb_4bit_quant_type="nf4",
48
+ bnb_4bit_compute_dtype=torch.float16
49
+ )
50
+ base_model = AutoModelForCausalLM.from_pretrained(
51
+ base_model_id,
52
+ quantization_config=bnb_config,
53
+ device_map=None, # Load to CPU initially
54
+ torch_dtype=torch.float16,
55
+ trust_remote_code=True,
56
+ )
57
+
58
+ print("Loading PEFT adapter onto the base model...")
59
+ model = PeftModel.from_pretrained(base_model, fine_tuned_model_id)
60
+
61
+ print("Dispatching model to devices...")
62
+ device_map = infer_auto_device_map(model, dtype=torch.float16)
63
+ model = dispatch_model(model, device_map=device_map)
64
+
65
+ # Ensure the model is in evaluation mode
66
+ model.eval()
67
+
68
+ print("Creating text generation pipeline...")
69
+ generator = pipeline(
70
+ "text-generation",
71
+ model=model,
72
+ tokenizer=tokenizer,
73
+ torch_dtype=torch.float16,
74
+ device_map="auto",
75
+ )
76
+
77
+ # Define a sample user prompt
78
+ user_prompt = "Write a short story about a robot learning to love."
79
+
80
+ # Format the prompt
81
+ formatted_prompt = f"[INST] {user_prompt} [/INST]"
82
+
83
+ # Generate text
84
+ outputs = generator(
85
+ formatted_prompt,
86
+ max_new_tokens=200,
87
+ num_return_sequences=1,
88
+ do_sample=True,
89
+ temperature=0.7,
90
+ top_k=50,
91
+ top_p=0.95,
92
+ )
93
+
94
+ # Print the generated text
95
+ for i, output in enumerate(outputs):
96
+ print(f"Generated Output {i+1}:\n{output['generated_text']}")
97
+ ```