import joblib from sklearn.linear_model import LogisticRegression import numpy as np def train_and_save_model(): # Modèle fictif simple X = np.array([[1, 2], [2, 3], [3, 4], [4, 5]]) y = np.array([0, 0, 1, 1]) model = LogisticRegression() model.fit(X, y) joblib.dump(model, 'model.joblib') print("Modèle entraîné et sauvegardé.") def predict(input_data): model = joblib.load('model.joblib') prediction = model.predict([input_data]) print(f"Prédiction : {prediction[0]}") return prediction[0] if __name__ == "__main__": train_and_save_model() predict([3, 4])