--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: vulnerability-severity-classification-roberta-base results: [] --- # vulnerability-severity-classification-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5053 - Accuracy: 0.8195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6458 | 1.0 | 14962 | 0.6352 | 0.7394 | | 0.4643 | 2.0 | 29924 | 0.5741 | 0.7702 | | 0.5519 | 3.0 | 44886 | 0.5261 | 0.7922 | | 0.3822 | 4.0 | 59848 | 0.5054 | 0.8111 | | 0.344 | 5.0 | 74810 | 0.5053 | 0.8195 | ### Framework versions - Transformers 4.57.3 - Pytorch 2.9.1+cu128 - Datasets 4.4.2 - Tokenizers 0.22.1