--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: vulnerability-severity-classification-roberta-base-expB results: [] --- # vulnerability-severity-classification-roberta-base-expB This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5255 - Accuracy: 0.8184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.6959 | 1.0 | 29819 | 0.6482 | 0.7331 | | 0.6137 | 2.0 | 59638 | 0.5869 | 0.7681 | | 0.48 | 3.0 | 89457 | 0.5544 | 0.7899 | | 0.4657 | 4.0 | 119276 | 0.5210 | 0.8109 | | 0.3649 | 5.0 | 149095 | 0.5255 | 0.8184 | ### Framework versions - Transformers 4.57.3 - Pytorch 2.9.1+cu128 - Datasets 4.4.1 - Tokenizers 0.22.1