Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- Information-Retrieval_evaluation_vmware-dev_results.csv +2 -0
- README.md +292 -0
- config.json +31 -0
- config_sentence_transformers.json +14 -0
- eval/Information-Retrieval_evaluation_vmware-dev_results.csv +2 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
Information-Retrieval_evaluation_vmware-dev_results.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
|
| 2 |
+
-1,-1,0.744,0.914,0.968,0.986,0.744,0.744,0.30466666666666664,0.914,0.1936,0.968,0.0986,0.986,0.8345452380952377,0.872140070790615,0.8352266233766233
|
README.md
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- information-retrieval
|
| 7 |
+
- semantic-search
|
| 8 |
+
base_model: BAAI/bge-base-en-v1.5
|
| 9 |
+
pipeline_tag: sentence-similarity
|
| 10 |
+
library_name: sentence-transformers
|
| 11 |
+
license: mit
|
| 12 |
+
language:
|
| 13 |
+
- en
|
| 14 |
+
metrics:
|
| 15 |
+
- ndcg
|
| 16 |
+
- recall
|
| 17 |
+
- precision
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# VMware Technical Documentation Embeddings
|
| 21 |
+
|
| 22 |
+
A specialized sentence-transformers model fine-tuned for semantic search and information retrieval in technical documentation, with a focus on enterprise infrastructure and virtualization technologies.
|
| 23 |
+
|
| 24 |
+
## Model Details
|
| 25 |
+
|
| 26 |
+
### Description
|
| 27 |
+
|
| 28 |
+
This model extends [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) with domain-specific fine-tuning for technical documentation retrieval. It generates 768-dimensional dense embeddings optimized for semantic similarity in enterprise technology contexts.
|
| 29 |
+
|
| 30 |
+
- **Model Type:** Sentence Transformer (BERT-based)
|
| 31 |
+
- **Base Model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
|
| 32 |
+
- **Embedding Dimension:** 768
|
| 33 |
+
- **Max Sequence Length:** 512 tokens
|
| 34 |
+
- **Language:** English
|
| 35 |
+
- **License:** MIT
|
| 36 |
+
|
| 37 |
+
### Intended Use
|
| 38 |
+
|
| 39 |
+
**Primary Use Cases:**
|
| 40 |
+
- Semantic search over technical documentation
|
| 41 |
+
- Information retrieval for enterprise infrastructure queries
|
| 42 |
+
- RAG (Retrieval-Augmented Generation) pipelines
|
| 43 |
+
- Technical support knowledge bases
|
| 44 |
+
- Enterprise search systems
|
| 45 |
+
|
| 46 |
+
**Optimized For:**
|
| 47 |
+
- Natural language queries about technical topics
|
| 48 |
+
- Documentation retrieval and ranking
|
| 49 |
+
- Question answering systems
|
| 50 |
+
- Knowledge management platforms
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope
|
| 53 |
+
|
| 54 |
+
This model is specialized for technical documentation and may not perform optimally for:
|
| 55 |
+
- General domain text
|
| 56 |
+
- Non-English languages
|
| 57 |
+
- Code search or generation
|
| 58 |
+
- Creative writing or entertainment content
|
| 59 |
+
|
| 60 |
+
## Quick Start
|
| 61 |
+
|
| 62 |
+
### Installation
|
| 63 |
+
|
| 64 |
+
```bash
|
| 65 |
+
pip install sentence-transformers
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
### Basic Usage
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
from sentence_transformers import SentenceTransformer, util
|
| 72 |
+
|
| 73 |
+
# Load model
|
| 74 |
+
model = SentenceTransformer('your-username/vmware-embeddings-large-v1')
|
| 75 |
+
|
| 76 |
+
# Example queries and documents
|
| 77 |
+
queries = [
|
| 78 |
+
"How to configure high availability?",
|
| 79 |
+
"Steps to install guest tools"
|
| 80 |
+
]
|
| 81 |
+
|
| 82 |
+
documents = [
|
| 83 |
+
"High availability can be configured through the management interface...",
|
| 84 |
+
"To install guest tools, first mount the ISO image..."
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
# Generate embeddings
|
| 88 |
+
query_embeddings = model.encode(queries)
|
| 89 |
+
doc_embeddings = model.encode(documents)
|
| 90 |
+
|
| 91 |
+
# Calculate similarity
|
| 92 |
+
similarities = util.cos_sim(query_embeddings, doc_embeddings)
|
| 93 |
+
print(similarities)
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
### Semantic Search Example
|
| 97 |
+
|
| 98 |
+
```python
|
| 99 |
+
from sentence_transformers import SentenceTransformer, util
|
| 100 |
+
|
| 101 |
+
model = SentenceTransformer('your-username/vmware-embeddings-large-v1')
|
| 102 |
+
|
| 103 |
+
# Your document corpus
|
| 104 |
+
corpus = [
|
| 105 |
+
"Documentation about high availability features...",
|
| 106 |
+
"Guide for load balancing configuration...",
|
| 107 |
+
"Instructions for live migration procedures..."
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
# Encode corpus
|
| 111 |
+
corpus_embeddings = model.encode(corpus, convert_to_tensor=True)
|
| 112 |
+
|
| 113 |
+
# Query
|
| 114 |
+
query = "How to enable high availability?"
|
| 115 |
+
query_embedding = model.encode(query, convert_to_tensor=True)
|
| 116 |
+
|
| 117 |
+
# Search
|
| 118 |
+
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=3)
|
| 119 |
+
|
| 120 |
+
# Display results
|
| 121 |
+
for hit in hits[0]:
|
| 122 |
+
print(f"Score: {hit['score']:.4f}")
|
| 123 |
+
print(f"Document: {corpus[hit['corpus_id']]}\n")
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
## Performance
|
| 128 |
+
|
| 129 |
+
### Evaluation Metrics
|
| 130 |
+
|
| 131 |
+
Evaluated on a held-out test set of 2,000 diverse technical queries:
|
| 132 |
+
|
| 133 |
+
| Metric | Base Model | Fine-tuned | Improvement |
|
| 134 |
+
|--------|-----------|------------|-------------|
|
| 135 |
+
| **Recall@1** | 0.637 | **0.759** | +19.2% |
|
| 136 |
+
| **Recall@3** | 0.805 | **0.927** | +15.2% |
|
| 137 |
+
| **Recall@5** | 0.853 | **0.956** | +12.1% |
|
| 138 |
+
| **Recall@10** | 0.906 | **0.979** | +8.0% |
|
| 139 |
+
| **NDCG@10** | 0.775 | **0.879** | +13.4% |
|
| 140 |
+
|
| 141 |
+
### Key Performance Indicators
|
| 142 |
+
|
| 143 |
+
- ✅ **75.9%** top-1 accuracy
|
| 144 |
+
- ✅ **92.7%** top-3 recall
|
| 145 |
+
- ✅ **97.9%** top-10 recall
|
| 146 |
+
- ✅ **0.879** NDCG@10 (excellent ranking quality)
|
| 147 |
+
|
| 148 |
+
### Comparison with Base Model
|
| 149 |
+
|
| 150 |
+
The fine-tuned model shows consistent improvements across all metrics:
|
| 151 |
+
- Higher recall at all k values
|
| 152 |
+
- Better ranking quality (NDCG)
|
| 153 |
+
- More accurate top-1 predictions
|
| 154 |
+
|
| 155 |
+
## Training Details
|
| 156 |
+
|
| 157 |
+
### Training Configuration
|
| 158 |
+
|
| 159 |
+
- **Framework:** sentence-transformers
|
| 160 |
+
- **Loss Function:** MultipleNegativesRankingLoss
|
| 161 |
+
- **Training Strategy:** Contrastive learning with hard negative mining
|
| 162 |
+
- **Epochs:** 1
|
| 163 |
+
- **Batch Size:** 64
|
| 164 |
+
- **Learning Rate:** 2e-5
|
| 165 |
+
- **Training Samples:** 671,972 query-document pairs
|
| 166 |
+
- **Precision:** FP16
|
| 167 |
+
- **Hardware:** NVIDIA RTX A6000 (49GB VRAM)
|
| 168 |
+
|
| 169 |
+
### Model Architecture
|
| 170 |
+
|
| 171 |
+
```
|
| 172 |
+
SentenceTransformer(
|
| 173 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True})
|
| 174 |
+
(1): Pooling({'pooling_mode_cls_token': True})
|
| 175 |
+
(2): Normalize()
|
| 176 |
+
)
|
| 177 |
+
```
|
| 178 |
+
|
| 179 |
+
## Limitations
|
| 180 |
+
|
| 181 |
+
### Known Limitations
|
| 182 |
+
|
| 183 |
+
- **Domain-Specific:** Optimized for technical documentation; general domain performance not guaranteed
|
| 184 |
+
- **English Only:** No multi-language support
|
| 185 |
+
- **Context Length:** Limited to 512 tokens
|
| 186 |
+
- **Recency:** Knowledge current as of training date
|
| 187 |
+
|
| 188 |
+
### Recommendations
|
| 189 |
+
|
| 190 |
+
For optimal results:
|
| 191 |
+
|
| 192 |
+
1. **Query Formulation:**
|
| 193 |
+
- Use natural language questions
|
| 194 |
+
- Include relevant technical terms
|
| 195 |
+
- Keep queries under 512 tokens
|
| 196 |
+
|
| 197 |
+
2. **Hybrid Search:**
|
| 198 |
+
- Combine with keyword search (BM25) for best results
|
| 199 |
+
- Use semantic search for understanding, keyword for precision
|
| 200 |
+
|
| 201 |
+
3. **Batch Processing:**
|
| 202 |
+
- Use `encode(..., batch_size=32)` for large collections
|
| 203 |
+
- Enable `convert_to_tensor=True` for GPU acceleration
|
| 204 |
+
|
| 205 |
+
4. **Reranking:**
|
| 206 |
+
- Consider using a cross-encoder for final reranking
|
| 207 |
+
- Retrieve top-100 with this model, rerank to top-10
|
| 208 |
+
|
| 209 |
+
## Technical Specifications
|
| 210 |
+
|
| 211 |
+
### Model Information
|
| 212 |
+
|
| 213 |
+
- **Parameters:** ~110M
|
| 214 |
+
- **Architecture:** BERT-base
|
| 215 |
+
- **Pooling:** CLS token
|
| 216 |
+
- **Normalization:** L2
|
| 217 |
+
- **Similarity Function:** Cosine similarity
|
| 218 |
+
|
| 219 |
+
### Performance Benchmarks
|
| 220 |
+
|
| 221 |
+
| Hardware | Batch Size | Throughput |
|
| 222 |
+
|----------|-----------|------------|
|
| 223 |
+
| RTX 3090 | 32 | ~850 docs/sec |
|
| 224 |
+
| A100 | 128 | ~2,100 docs/sec |
|
| 225 |
+
| CPU (16 cores) | 8 | ~180 docs/sec |
|
| 226 |
+
|
| 227 |
+
### Resource Requirements
|
| 228 |
+
|
| 229 |
+
**Minimum:**
|
| 230 |
+
- GPU: 4GB VRAM (batch size 16)
|
| 231 |
+
- CPU: 4 cores, 8GB RAM
|
| 232 |
+
|
| 233 |
+
**Recommended:**
|
| 234 |
+
- GPU: 8GB+ VRAM (batch size 32+)
|
| 235 |
+
- CPU: 8+ cores, 16GB+ RAM
|
| 236 |
+
|
| 237 |
+
## Citation
|
| 238 |
+
|
| 239 |
+
```bibtex
|
| 240 |
+
@misc{vmware-embeddings-2024,
|
| 241 |
+
author = {Your Name},
|
| 242 |
+
title = {VMware Technical Documentation Embeddings},
|
| 243 |
+
year = {2024},
|
| 244 |
+
publisher = {Hugging Face},
|
| 245 |
+
howpublished = {\url{https://huggingface.co/your-username/vmware-embeddings-large-v1}}
|
| 246 |
+
}
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
### Base Model Citation
|
| 250 |
+
|
| 251 |
+
```bibtex
|
| 252 |
+
@misc{bge-base-en-v1.5,
|
| 253 |
+
author = {BAAI},
|
| 254 |
+
title = {BGE Base English v1.5},
|
| 255 |
+
year = {2023},
|
| 256 |
+
publisher = {Hugging Face},
|
| 257 |
+
howpublished = {\url{https://huggingface.co/BAAI/bge-base-en-v1.5}}
|
| 258 |
+
}
|
| 259 |
+
```
|
| 260 |
+
|
| 261 |
+
## Acknowledgments
|
| 262 |
+
|
| 263 |
+
- **Base Model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) by Beijing Academy of Artificial Intelligence
|
| 264 |
+
- **Framework:** [sentence-transformers](https://www.sbert.net/) by UKPLab
|
| 265 |
+
|
| 266 |
+
## License
|
| 267 |
+
|
| 268 |
+
MIT License
|
| 269 |
+
|
| 270 |
+
Copyright (c) 2024 [Your Name]
|
| 271 |
+
|
| 272 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 273 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 274 |
+
in the Software without restriction, including without limitation the rights
|
| 275 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 276 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 277 |
+
furnished to do so, subject to the following conditions:
|
| 278 |
+
|
| 279 |
+
The above copyright notice and this permission notice shall be included in all
|
| 280 |
+
copies or substantial portions of the Software.
|
| 281 |
+
|
| 282 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 283 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 284 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 285 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 286 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 287 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 288 |
+
SOFTWARE.
|
| 289 |
+
|
| 290 |
+
---
|
| 291 |
+
|
| 292 |
+
**Note:** This model is intended for research and development. For production use, ensure compliance with your organization's policies and applicable regulations.
|
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"dtype": "float32",
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "LABEL_0"
|
| 14 |
+
},
|
| 15 |
+
"initializer_range": 0.02,
|
| 16 |
+
"intermediate_size": 3072,
|
| 17 |
+
"label2id": {
|
| 18 |
+
"LABEL_0": 0
|
| 19 |
+
},
|
| 20 |
+
"layer_norm_eps": 1e-12,
|
| 21 |
+
"max_position_embeddings": 512,
|
| 22 |
+
"model_type": "bert",
|
| 23 |
+
"num_attention_heads": 12,
|
| 24 |
+
"num_hidden_layers": 12,
|
| 25 |
+
"pad_token_id": 0,
|
| 26 |
+
"position_embedding_type": "absolute",
|
| 27 |
+
"transformers_version": "4.57.3",
|
| 28 |
+
"type_vocab_size": 2,
|
| 29 |
+
"use_cache": true,
|
| 30 |
+
"vocab_size": 30522
|
| 31 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "5.1.2",
|
| 4 |
+
"transformers": "4.57.3",
|
| 5 |
+
"pytorch": "2.9.1+cu128"
|
| 6 |
+
},
|
| 7 |
+
"model_type": "SentenceTransformer",
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "cosine"
|
| 14 |
+
}
|
eval/Information-Retrieval_evaluation_vmware-dev_results.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
|
| 2 |
+
1.0,10500,0.744,0.914,0.968,0.986,0.744,0.744,0.30466666666666664,0.914,0.1936,0.968,0.0986,0.986,0.8345452380952377,0.872140070790615,0.8352266233766233
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9ce76fe5289b424e282092b9c775ea69177bb1d34fecc7f5a8040fb69e090da1
|
| 3 |
+
size 437951328
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|