Many updates from the Github
Browse files- pipeline.py +433 -208
pipeline.py
CHANGED
|
@@ -1,25 +1,52 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import inspect
|
| 5 |
-
import warnings
|
| 6 |
from typing import Callable, List, Optional, Union
|
| 7 |
|
| 8 |
import torch
|
| 9 |
|
| 10 |
-
from diffusers.
|
| 11 |
-
from
|
| 12 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 13 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 14 |
-
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, DPMSolverMultistepScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler
|
| 15 |
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
| 19 |
r"""
|
| 20 |
Pipeline for text-to-image generation using Stable Diffusion.
|
|
|
|
| 21 |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 22 |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
| 23 |
Args:
|
| 24 |
vae ([`AutoencoderKL`]):
|
| 25 |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
@@ -35,11 +62,12 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 35 |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
| 36 |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 37 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
| 38 |
-
Classification module that estimates whether generated images could be considered
|
| 39 |
-
Please, refer to the [model card](https://huggingface.co/
|
| 40 |
feature_extractor ([`CLIPFeatureExtractor`]):
|
| 41 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
| 42 |
"""
|
|
|
|
| 43 |
|
| 44 |
def __init__(
|
| 45 |
self,
|
|
@@ -47,11 +75,84 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 47 |
text_encoder: CLIPTextModel,
|
| 48 |
tokenizer: CLIPTokenizer,
|
| 49 |
unet: UNet2DConditionModel,
|
| 50 |
-
scheduler: Union[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
safety_checker: StableDiffusionSafetyChecker,
|
| 52 |
feature_extractor: CLIPFeatureExtractor,
|
|
|
|
| 53 |
):
|
| 54 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
self.register_modules(
|
| 56 |
vae=vae,
|
| 57 |
text_encoder=text_encoder,
|
|
@@ -61,39 +162,13 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 61 |
safety_checker=safety_checker,
|
| 62 |
feature_extractor=feature_extractor,
|
| 63 |
)
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
r"""
|
| 67 |
-
Enable sliced attention computation.
|
| 68 |
-
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
| 69 |
-
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
| 70 |
-
Args:
|
| 71 |
-
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
| 72 |
-
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
| 73 |
-
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
| 74 |
-
`attention_head_dim` must be a multiple of `slice_size`.
|
| 75 |
-
"""
|
| 76 |
-
if slice_size == "auto":
|
| 77 |
-
if isinstance(self.unet.config.attention_head_dim, int):
|
| 78 |
-
# half the attention head size is usually a good trade-off between
|
| 79 |
-
# speed and memory
|
| 80 |
-
slice_size = self.unet.config.attention_head_dim // 2
|
| 81 |
-
else:
|
| 82 |
-
# if `attention_head_dim` is a list, take the smallest head size
|
| 83 |
-
slice_size = min(self.unet.config.attention_head_dim)
|
| 84 |
-
self.unet.set_attention_slice(slice_size)
|
| 85 |
-
|
| 86 |
-
def disable_attention_slicing(self):
|
| 87 |
-
r"""
|
| 88 |
-
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
| 89 |
-
back to computing attention in one step.
|
| 90 |
-
"""
|
| 91 |
-
# set slice_size = `None` to disable `attention slicing`
|
| 92 |
-
self.enable_attention_slicing(None)
|
| 93 |
|
| 94 |
def enable_vae_slicing(self):
|
| 95 |
r"""
|
| 96 |
Enable sliced VAE decoding.
|
|
|
|
| 97 |
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
| 98 |
steps. This is useful to save some memory and allow larger batch sizes.
|
| 99 |
"""
|
|
@@ -106,15 +181,229 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 106 |
"""
|
| 107 |
self.vae.disable_slicing()
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
@torch.no_grad()
|
| 110 |
def __call__(
|
| 111 |
self,
|
| 112 |
prompt: Union[str, List[str]],
|
| 113 |
-
height: Optional[int] =
|
| 114 |
-
width: Optional[int] =
|
| 115 |
-
num_inference_steps:
|
| 116 |
-
guidance_scale:
|
| 117 |
-
|
|
|
|
|
|
|
| 118 |
generator: Optional[torch.Generator] = None,
|
| 119 |
latents: Optional[torch.FloatTensor] = None,
|
| 120 |
output_type: Optional[str] = "pil",
|
|
@@ -122,16 +411,16 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 122 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 123 |
callback_steps: Optional[int] = 1,
|
| 124 |
weights: Optional[str] = "",
|
| 125 |
-
**kwargs,
|
| 126 |
):
|
| 127 |
r"""
|
| 128 |
Function invoked when calling the pipeline for generation.
|
|
|
|
| 129 |
Args:
|
| 130 |
prompt (`str` or `List[str]`):
|
| 131 |
The prompt or prompts to guide the image generation.
|
| 132 |
-
height (`int`, *optional*, defaults to
|
| 133 |
The height in pixels of the generated image.
|
| 134 |
-
width (`int`, *optional*, defaults to
|
| 135 |
The width in pixels of the generated image.
|
| 136 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 137 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
@@ -142,6 +431,11 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 142 |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 143 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 144 |
usually at the expense of lower image quality.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
eta (`float`, *optional*, defaults to 0.0):
|
| 146 |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 147 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
@@ -171,186 +465,117 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
|
| 171 |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 172 |
(nsfw) content, according to the `safety_checker`.
|
| 173 |
"""
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
if
|
| 176 |
-
|
| 177 |
-
warnings.warn(
|
| 178 |
-
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
|
| 179 |
-
" Consider using `pipe.to(torch_device)` instead."
|
| 180 |
-
)
|
| 181 |
-
|
| 182 |
-
# Set device as before (to be removed in 0.3.0)
|
| 183 |
-
if device is None:
|
| 184 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 185 |
-
self.to(device)
|
| 186 |
-
|
| 187 |
-
if isinstance(prompt, str):
|
| 188 |
-
batch_size = 1
|
| 189 |
-
elif isinstance(prompt, list):
|
| 190 |
-
batch_size = len(prompt)
|
| 191 |
-
else:
|
| 192 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 193 |
-
|
| 194 |
-
if height % 8 != 0 or width % 8 != 0:
|
| 195 |
-
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 196 |
-
|
| 197 |
-
if "|" in prompt:
|
| 198 |
-
prompt = [x.strip() for x in prompt.split("|")]
|
| 199 |
-
print(f"composing {prompt}...")
|
| 200 |
-
|
| 201 |
-
# get prompt text embeddings
|
| 202 |
-
text_input = self.tokenizer(
|
| 203 |
-
prompt,
|
| 204 |
-
padding="max_length",
|
| 205 |
-
max_length=self.tokenizer.model_max_length,
|
| 206 |
-
truncation=True,
|
| 207 |
-
return_tensors="pt",
|
| 208 |
-
)
|
| 209 |
-
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
| 210 |
-
|
| 211 |
-
if not weights:
|
| 212 |
-
# specify weights for prompts (excluding the unconditional score)
|
| 213 |
-
print("using equal weights for all prompts...")
|
| 214 |
-
pos_weights = torch.tensor(
|
| 215 |
-
[1 / (text_embeddings.shape[0] - 1)] * (text_embeddings.shape[0] - 1), device=self.device
|
| 216 |
-
).reshape(-1, 1, 1, 1)
|
| 217 |
-
neg_weights = torch.tensor([1.0], device=self.device).reshape(-1, 1, 1, 1)
|
| 218 |
-
mask = torch.tensor([False] + [True] * pos_weights.shape[0], dtype=torch.bool)
|
| 219 |
-
else:
|
| 220 |
-
# set prompt weight for each
|
| 221 |
-
num_prompts = len(prompt) if isinstance(prompt, list) else 1
|
| 222 |
-
weights = [float(w.strip()) for w in weights.split("|")]
|
| 223 |
-
if len(weights) < num_prompts:
|
| 224 |
-
weights.append(1.0)
|
| 225 |
-
weights = torch.tensor(weights, device=self.device)
|
| 226 |
-
assert len(weights) == text_embeddings.shape[0], "weights specified are not equal to the number of prompts"
|
| 227 |
-
pos_weights = []
|
| 228 |
-
neg_weights = []
|
| 229 |
-
mask = [] # first one is unconditional score
|
| 230 |
-
for w in weights:
|
| 231 |
-
if w > 0:
|
| 232 |
-
pos_weights.append(w)
|
| 233 |
-
mask.append(True)
|
| 234 |
-
else:
|
| 235 |
-
neg_weights.append(abs(w))
|
| 236 |
-
mask.append(False)
|
| 237 |
-
# normalize the weights
|
| 238 |
-
pos_weights = torch.tensor(pos_weights, device=self.device).reshape(-1, 1, 1, 1)
|
| 239 |
-
pos_weights = pos_weights / pos_weights.sum()
|
| 240 |
-
neg_weights = torch.tensor(neg_weights, device=self.device).reshape(-1, 1, 1, 1)
|
| 241 |
-
neg_weights = neg_weights / neg_weights.sum()
|
| 242 |
-
mask = torch.tensor(mask, device=self.device, dtype=torch.bool)
|
| 243 |
|
|
|
|
|
|
|
|
|
|
| 244 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 245 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 246 |
# corresponds to doing no classifier free guidance.
|
| 247 |
do_classifier_free_guidance = guidance_scale > 1.0
|
| 248 |
-
# get unconditional embeddings for classifier free guidance
|
| 249 |
-
if do_classifier_free_guidance:
|
| 250 |
-
max_length = text_input.input_ids.shape[-1]
|
| 251 |
-
|
| 252 |
-
if torch.all(mask):
|
| 253 |
-
# no negative prompts, so we use empty string as the negative prompt
|
| 254 |
-
uncond_input = self.tokenizer(
|
| 255 |
-
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
| 256 |
-
)
|
| 257 |
-
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
| 258 |
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 263 |
-
|
| 264 |
-
# update negative weights
|
| 265 |
-
neg_weights = torch.tensor([1.0], device=self.device)
|
| 266 |
-
mask = torch.tensor([False] + mask.detach().tolist(), device=self.device, dtype=torch.bool)
|
| 267 |
-
|
| 268 |
-
# get the initial random noise unless the user supplied it
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
else:
|
| 282 |
-
|
| 283 |
-
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
| 284 |
-
latents = latents.to(self.device)
|
| 285 |
|
| 286 |
-
#
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
extra_set_kwargs["offset"] = 1
|
| 291 |
-
|
| 292 |
-
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
| 293 |
-
|
| 294 |
-
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
|
| 295 |
-
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
| 296 |
-
latents = latents * self.scheduler.sigmas[0]
|
| 297 |
|
| 298 |
-
#
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
)
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
|
|
|
|
|
|
|
|
|
| 337 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 338 |
|
| 339 |
# call the callback, if provided
|
| 340 |
if callback is not None and i % callback_steps == 0:
|
| 341 |
callback(i, t, latents)
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
|
|
|
|
|
|
| 346 |
|
| 347 |
-
|
| 348 |
-
image =
|
| 349 |
|
| 350 |
-
#
|
| 351 |
-
|
| 352 |
-
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
|
| 353 |
|
|
|
|
| 354 |
if output_type == "pil":
|
| 355 |
image = self.numpy_to_pil(image)
|
| 356 |
|
|
|
|
| 1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
import inspect
|
|
|
|
| 16 |
from typing import Callable, List, Optional, Union
|
| 17 |
|
| 18 |
import torch
|
| 19 |
|
| 20 |
+
from diffusers.utils import is_accelerate_available
|
| 21 |
+
from packaging import version
|
|
|
|
|
|
|
|
|
|
| 22 |
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
| 23 |
|
| 24 |
+
from ...configuration_utils import FrozenDict
|
| 25 |
+
from ...models import AutoencoderKL, UNet2DConditionModel
|
| 26 |
+
from ...pipeline_utils import DiffusionPipeline
|
| 27 |
+
from ...schedulers import (
|
| 28 |
+
DDIMScheduler,
|
| 29 |
+
DPMSolverMultistepScheduler,
|
| 30 |
+
EulerAncestralDiscreteScheduler,
|
| 31 |
+
EulerDiscreteScheduler,
|
| 32 |
+
LMSDiscreteScheduler,
|
| 33 |
+
PNDMScheduler,
|
| 34 |
+
)
|
| 35 |
+
from ...utils import deprecate, logging
|
| 36 |
+
from . import StableDiffusionPipelineOutput
|
| 37 |
+
from .safety_checker import StableDiffusionSafetyChecker
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 41 |
+
|
| 42 |
|
| 43 |
class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
| 44 |
r"""
|
| 45 |
Pipeline for text-to-image generation using Stable Diffusion.
|
| 46 |
+
|
| 47 |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 48 |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 49 |
+
|
| 50 |
Args:
|
| 51 |
vae ([`AutoencoderKL`]):
|
| 52 |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
|
|
| 62 |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
| 63 |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
| 64 |
safety_checker ([`StableDiffusionSafetyChecker`]):
|
| 65 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
| 66 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
| 67 |
feature_extractor ([`CLIPFeatureExtractor`]):
|
| 68 |
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
| 69 |
"""
|
| 70 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
| 71 |
|
| 72 |
def __init__(
|
| 73 |
self,
|
|
|
|
| 75 |
text_encoder: CLIPTextModel,
|
| 76 |
tokenizer: CLIPTokenizer,
|
| 77 |
unet: UNet2DConditionModel,
|
| 78 |
+
scheduler: Union[
|
| 79 |
+
DDIMScheduler,
|
| 80 |
+
PNDMScheduler,
|
| 81 |
+
LMSDiscreteScheduler,
|
| 82 |
+
EulerDiscreteScheduler,
|
| 83 |
+
EulerAncestralDiscreteScheduler,
|
| 84 |
+
DPMSolverMultistepScheduler,
|
| 85 |
+
],
|
| 86 |
safety_checker: StableDiffusionSafetyChecker,
|
| 87 |
feature_extractor: CLIPFeatureExtractor,
|
| 88 |
+
requires_safety_checker: bool = True,
|
| 89 |
):
|
| 90 |
super().__init__()
|
| 91 |
+
|
| 92 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
| 93 |
+
deprecation_message = (
|
| 94 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
| 95 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
| 96 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
| 97 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
| 98 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
| 99 |
+
" file"
|
| 100 |
+
)
|
| 101 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
| 102 |
+
new_config = dict(scheduler.config)
|
| 103 |
+
new_config["steps_offset"] = 1
|
| 104 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
| 105 |
+
|
| 106 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
| 107 |
+
deprecation_message = (
|
| 108 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
| 109 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
| 110 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
| 111 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
| 112 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
| 113 |
+
)
|
| 114 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
| 115 |
+
new_config = dict(scheduler.config)
|
| 116 |
+
new_config["clip_sample"] = False
|
| 117 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
| 118 |
+
|
| 119 |
+
if safety_checker is None and requires_safety_checker:
|
| 120 |
+
logger.warning(
|
| 121 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
| 122 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
| 123 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
| 124 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
| 125 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
| 126 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
if safety_checker is not None and feature_extractor is None:
|
| 130 |
+
raise ValueError(
|
| 131 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
| 132 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
| 136 |
+
version.parse(unet.config._diffusers_version).base_version
|
| 137 |
+
) < version.parse("0.9.0.dev0")
|
| 138 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
| 139 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
| 140 |
+
deprecation_message = (
|
| 141 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
| 142 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
| 143 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
| 144 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
| 145 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
| 146 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
| 147 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
| 148 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
| 149 |
+
" the `unet/config.json` file"
|
| 150 |
+
)
|
| 151 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
| 152 |
+
new_config = dict(unet.config)
|
| 153 |
+
new_config["sample_size"] = 64
|
| 154 |
+
unet._internal_dict = FrozenDict(new_config)
|
| 155 |
+
|
| 156 |
self.register_modules(
|
| 157 |
vae=vae,
|
| 158 |
text_encoder=text_encoder,
|
|
|
|
| 162 |
safety_checker=safety_checker,
|
| 163 |
feature_extractor=feature_extractor,
|
| 164 |
)
|
| 165 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 166 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
def enable_vae_slicing(self):
|
| 169 |
r"""
|
| 170 |
Enable sliced VAE decoding.
|
| 171 |
+
|
| 172 |
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
| 173 |
steps. This is useful to save some memory and allow larger batch sizes.
|
| 174 |
"""
|
|
|
|
| 181 |
"""
|
| 182 |
self.vae.disable_slicing()
|
| 183 |
|
| 184 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
| 185 |
+
r"""
|
| 186 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
| 187 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
| 188 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
| 189 |
+
"""
|
| 190 |
+
if is_accelerate_available():
|
| 191 |
+
from accelerate import cpu_offload
|
| 192 |
+
else:
|
| 193 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
| 194 |
+
|
| 195 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 196 |
+
|
| 197 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
| 198 |
+
if cpu_offloaded_model is not None:
|
| 199 |
+
cpu_offload(cpu_offloaded_model, device)
|
| 200 |
+
|
| 201 |
+
if self.safety_checker is not None:
|
| 202 |
+
# TODO(Patrick) - there is currently a bug with cpu offload of nn.Parameter in accelerate
|
| 203 |
+
# fix by only offloading self.safety_checker for now
|
| 204 |
+
cpu_offload(self.safety_checker.vision_model, device)
|
| 205 |
+
|
| 206 |
+
@property
|
| 207 |
+
def _execution_device(self):
|
| 208 |
+
r"""
|
| 209 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
| 210 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
| 211 |
+
hooks.
|
| 212 |
+
"""
|
| 213 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
| 214 |
+
return self.device
|
| 215 |
+
for module in self.unet.modules():
|
| 216 |
+
if (
|
| 217 |
+
hasattr(module, "_hf_hook")
|
| 218 |
+
and hasattr(module._hf_hook, "execution_device")
|
| 219 |
+
and module._hf_hook.execution_device is not None
|
| 220 |
+
):
|
| 221 |
+
return torch.device(module._hf_hook.execution_device)
|
| 222 |
+
return self.device
|
| 223 |
+
|
| 224 |
+
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
| 225 |
+
r"""
|
| 226 |
+
Encodes the prompt into text encoder hidden states.
|
| 227 |
+
|
| 228 |
+
Args:
|
| 229 |
+
prompt (`str` or `list(int)`):
|
| 230 |
+
prompt to be encoded
|
| 231 |
+
device: (`torch.device`):
|
| 232 |
+
torch device
|
| 233 |
+
num_images_per_prompt (`int`):
|
| 234 |
+
number of images that should be generated per prompt
|
| 235 |
+
do_classifier_free_guidance (`bool`):
|
| 236 |
+
whether to use classifier free guidance or not
|
| 237 |
+
negative_prompt (`str` or `List[str]`):
|
| 238 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 239 |
+
if `guidance_scale` is less than `1`).
|
| 240 |
+
"""
|
| 241 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
| 242 |
+
|
| 243 |
+
text_inputs = self.tokenizer(
|
| 244 |
+
prompt,
|
| 245 |
+
padding="max_length",
|
| 246 |
+
max_length=self.tokenizer.model_max_length,
|
| 247 |
+
truncation=True,
|
| 248 |
+
return_tensors="pt",
|
| 249 |
+
)
|
| 250 |
+
text_input_ids = text_inputs.input_ids
|
| 251 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 252 |
+
|
| 253 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 254 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
| 255 |
+
logger.warning(
|
| 256 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 257 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 261 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
| 262 |
+
else:
|
| 263 |
+
attention_mask = None
|
| 264 |
+
|
| 265 |
+
text_embeddings = self.text_encoder(
|
| 266 |
+
text_input_ids.to(device),
|
| 267 |
+
attention_mask=attention_mask,
|
| 268 |
+
)
|
| 269 |
+
text_embeddings = text_embeddings[0]
|
| 270 |
+
|
| 271 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 272 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
| 273 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
| 274 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 275 |
+
|
| 276 |
+
# get unconditional embeddings for classifier free guidance
|
| 277 |
+
if do_classifier_free_guidance:
|
| 278 |
+
uncond_tokens: List[str]
|
| 279 |
+
if negative_prompt is None:
|
| 280 |
+
uncond_tokens = [""] * batch_size
|
| 281 |
+
elif type(prompt) is not type(negative_prompt):
|
| 282 |
+
raise TypeError(
|
| 283 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 284 |
+
f" {type(prompt)}."
|
| 285 |
+
)
|
| 286 |
+
elif isinstance(negative_prompt, str):
|
| 287 |
+
uncond_tokens = [negative_prompt]
|
| 288 |
+
elif batch_size != len(negative_prompt):
|
| 289 |
+
raise ValueError(
|
| 290 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 291 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 292 |
+
" the batch size of `prompt`."
|
| 293 |
+
)
|
| 294 |
+
else:
|
| 295 |
+
uncond_tokens = negative_prompt
|
| 296 |
+
|
| 297 |
+
max_length = text_input_ids.shape[-1]
|
| 298 |
+
uncond_input = self.tokenizer(
|
| 299 |
+
uncond_tokens,
|
| 300 |
+
padding="max_length",
|
| 301 |
+
max_length=max_length,
|
| 302 |
+
truncation=True,
|
| 303 |
+
return_tensors="pt",
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
| 307 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
| 308 |
+
else:
|
| 309 |
+
attention_mask = None
|
| 310 |
+
|
| 311 |
+
uncond_embeddings = self.text_encoder(
|
| 312 |
+
uncond_input.input_ids.to(device),
|
| 313 |
+
attention_mask=attention_mask,
|
| 314 |
+
)
|
| 315 |
+
uncond_embeddings = uncond_embeddings[0]
|
| 316 |
+
|
| 317 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 318 |
+
seq_len = uncond_embeddings.shape[1]
|
| 319 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
| 320 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 321 |
+
|
| 322 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 323 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 324 |
+
# to avoid doing two forward passes
|
| 325 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 326 |
+
|
| 327 |
+
return text_embeddings
|
| 328 |
+
|
| 329 |
+
def run_safety_checker(self, image, device, dtype):
|
| 330 |
+
if self.safety_checker is not None:
|
| 331 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
| 332 |
+
image, has_nsfw_concept = self.safety_checker(
|
| 333 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
| 334 |
+
)
|
| 335 |
+
else:
|
| 336 |
+
has_nsfw_concept = None
|
| 337 |
+
return image, has_nsfw_concept
|
| 338 |
+
|
| 339 |
+
def decode_latents(self, latents):
|
| 340 |
+
latents = 1 / 0.18215 * latents
|
| 341 |
+
image = self.vae.decode(latents).sample
|
| 342 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 343 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
| 344 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 345 |
+
return image
|
| 346 |
+
|
| 347 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 348 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 349 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 350 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 351 |
+
# and should be between [0, 1]
|
| 352 |
+
|
| 353 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 354 |
+
extra_step_kwargs = {}
|
| 355 |
+
if accepts_eta:
|
| 356 |
+
extra_step_kwargs["eta"] = eta
|
| 357 |
+
|
| 358 |
+
# check if the scheduler accepts generator
|
| 359 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 360 |
+
if accepts_generator:
|
| 361 |
+
extra_step_kwargs["generator"] = generator
|
| 362 |
+
return extra_step_kwargs
|
| 363 |
+
|
| 364 |
+
def check_inputs(self, prompt, height, width, callback_steps):
|
| 365 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
| 366 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 367 |
+
|
| 368 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 369 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 370 |
+
|
| 371 |
+
if (callback_steps is None) or (
|
| 372 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 373 |
+
):
|
| 374 |
+
raise ValueError(
|
| 375 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 376 |
+
f" {type(callback_steps)}."
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 380 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 381 |
+
if latents is None:
|
| 382 |
+
if device.type == "mps":
|
| 383 |
+
# randn does not work reproducibly on mps
|
| 384 |
+
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
|
| 385 |
+
else:
|
| 386 |
+
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
| 387 |
+
else:
|
| 388 |
+
if latents.shape != shape:
|
| 389 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
| 390 |
+
latents = latents.to(device)
|
| 391 |
+
|
| 392 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 393 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 394 |
+
return latents
|
| 395 |
+
|
| 396 |
@torch.no_grad()
|
| 397 |
def __call__(
|
| 398 |
self,
|
| 399 |
prompt: Union[str, List[str]],
|
| 400 |
+
height: Optional[int] = None,
|
| 401 |
+
width: Optional[int] = None,
|
| 402 |
+
num_inference_steps: int = 50,
|
| 403 |
+
guidance_scale: float = 7.5,
|
| 404 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 405 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 406 |
+
eta: float = 0.0,
|
| 407 |
generator: Optional[torch.Generator] = None,
|
| 408 |
latents: Optional[torch.FloatTensor] = None,
|
| 409 |
output_type: Optional[str] = "pil",
|
|
|
|
| 411 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 412 |
callback_steps: Optional[int] = 1,
|
| 413 |
weights: Optional[str] = "",
|
|
|
|
| 414 |
):
|
| 415 |
r"""
|
| 416 |
Function invoked when calling the pipeline for generation.
|
| 417 |
+
|
| 418 |
Args:
|
| 419 |
prompt (`str` or `List[str]`):
|
| 420 |
The prompt or prompts to guide the image generation.
|
| 421 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 422 |
The height in pixels of the generated image.
|
| 423 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 424 |
The width in pixels of the generated image.
|
| 425 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 426 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
|
|
| 431 |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 432 |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 433 |
usually at the expense of lower image quality.
|
| 434 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 435 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 436 |
+
if `guidance_scale` is less than `1`).
|
| 437 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 438 |
+
The number of images to generate per prompt.
|
| 439 |
eta (`float`, *optional*, defaults to 0.0):
|
| 440 |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 441 |
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
|
|
| 465 |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 466 |
(nsfw) content, according to the `safety_checker`.
|
| 467 |
"""
|
| 468 |
+
# 0. Default height and width to unet
|
| 469 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 470 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 471 |
|
| 472 |
+
# 1. Check inputs. Raise error if not correct
|
| 473 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 474 |
|
| 475 |
+
# 2. Define call parameters
|
| 476 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
| 477 |
+
device = self._execution_device
|
| 478 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 479 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 480 |
# corresponds to doing no classifier free guidance.
|
| 481 |
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
|
| 483 |
+
if "|" in prompt:
|
| 484 |
+
prompt = [x.strip() for x in prompt.split("|")]
|
| 485 |
+
print(f"composing {prompt}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
+
if not weights:
|
| 488 |
+
# specify weights for prompts (excluding the unconditional score)
|
| 489 |
+
print("using equal positive weights (conjunction) for all prompts...")
|
| 490 |
+
weights = torch.tensor([guidance_scale] * len(prompt), device=self.device).reshape(-1, 1, 1, 1)
|
| 491 |
+
else:
|
| 492 |
+
# set prompt weight for each
|
| 493 |
+
num_prompts = len(prompt) if isinstance(prompt, list) else 1
|
| 494 |
+
weights = [float(w.strip()) for w in weights.split("|")]
|
| 495 |
+
# guidance scale as the default
|
| 496 |
+
if len(weights) < num_prompts:
|
| 497 |
+
weights.append(guidance_scale)
|
| 498 |
+
else:
|
| 499 |
+
weights = weights[:num_prompts]
|
| 500 |
+
assert len(weights) == len(prompt), "weights specified are not equal to the number of prompts"
|
| 501 |
+
weights = torch.tensor(weights, device=self.device).reshape(-1, 1, 1, 1)
|
| 502 |
else:
|
| 503 |
+
weights = guidance_scale
|
|
|
|
|
|
|
| 504 |
|
| 505 |
+
# 3. Encode input prompt
|
| 506 |
+
text_embeddings = self._encode_prompt(
|
| 507 |
+
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
| 508 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 509 |
|
| 510 |
+
# 4. Prepare timesteps
|
| 511 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 512 |
+
timesteps = self.scheduler.timesteps
|
| 513 |
+
|
| 514 |
+
# 5. Prepare latent variables
|
| 515 |
+
num_channels_latents = self.unet.in_channels
|
| 516 |
+
latents = self.prepare_latents(
|
| 517 |
+
batch_size * num_images_per_prompt,
|
| 518 |
+
num_channels_latents,
|
| 519 |
+
height,
|
| 520 |
+
width,
|
| 521 |
+
text_embeddings.dtype,
|
| 522 |
+
device,
|
| 523 |
+
generator,
|
| 524 |
+
latents,
|
| 525 |
+
)
|
| 526 |
|
| 527 |
+
# composable diffusion
|
| 528 |
+
if isinstance(prompt, list) and batch_size == 1:
|
| 529 |
+
# remove extra unconditional embedding
|
| 530 |
+
# N = one unconditional embed + conditional embeds
|
| 531 |
+
text_embeddings = text_embeddings[len(prompt) - 1 :]
|
| 532 |
+
|
| 533 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 534 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 535 |
+
|
| 536 |
+
# 7. Denoising loop
|
| 537 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 538 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 539 |
+
for i, t in enumerate(timesteps):
|
| 540 |
+
# expand the latents if we are doing classifier free guidance
|
| 541 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 542 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 543 |
+
|
| 544 |
+
# predict the noise residual
|
| 545 |
+
noise_pred = []
|
| 546 |
+
for j in range(text_embeddings.shape[0]):
|
| 547 |
+
noise_pred.append(
|
| 548 |
+
self.unet(latent_model_input[:1], t, encoder_hidden_states=text_embeddings[j : j + 1]).sample
|
| 549 |
+
)
|
| 550 |
+
noise_pred = torch.cat(noise_pred, dim=0)
|
| 551 |
+
|
| 552 |
+
# perform guidance
|
| 553 |
+
if do_classifier_free_guidance:
|
| 554 |
+
noise_pred_uncond, noise_pred_text = noise_pred[:1], noise_pred[1:]
|
| 555 |
+
noise_pred = noise_pred_uncond + (weights * (noise_pred_text - noise_pred_uncond)).sum(
|
| 556 |
+
dim=0, keepdims=True
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 560 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 561 |
|
| 562 |
# call the callback, if provided
|
| 563 |
if callback is not None and i % callback_steps == 0:
|
| 564 |
callback(i, t, latents)
|
| 565 |
|
| 566 |
+
# call the callback, if provided
|
| 567 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 568 |
+
progress_bar.update()
|
| 569 |
+
if callback is not None and i % callback_steps == 0:
|
| 570 |
+
callback(i, t, latents)
|
| 571 |
|
| 572 |
+
# 8. Post-processing
|
| 573 |
+
image = self.decode_latents(latents)
|
| 574 |
|
| 575 |
+
# 9. Run safety checker
|
| 576 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
|
|
|
|
| 577 |
|
| 578 |
+
# 10. Convert to PIL
|
| 579 |
if output_type == "pil":
|
| 580 |
image = self.numpy_to_pil(image)
|
| 581 |
|